
Formal Compiler Implementation in a Logical Framework

Jason Hickey, Aleksey Nogin, Adam Granicz, and Brian Aydemir∗

California Institute of Technology
1200 E. California Blvd.

Pasadena, CA 91125, USA
{jyh,nogin,granicz,emre}@cs.caltech.edu

Caltech Technical Report caltechCSTR:2003.002

April 29, 2003

Abstract

The task of designing and implementing a compiler can be a difficult and error-prone process. In
this paper, we present a new approach based on the use of higher-order abstract syntax and term
rewriting in a logical framework. All program transformations, from parsing to code generation,
are cleanly isolated and specified as term rewrites. This has several advantages. The correctness
of the compiler depends solely on a small set of rewrite rules that are written in the language of
formal mathematics. In addition, the logical framework guarantees the preservation of scoping, and
it automates many frequently-occurring tasks including substitution and rewriting strategies. As we
show, compiler development in a logical framework can be easier than in a general-purpose language
like ML, in part because of automation, and also because the framework provides extensive support
for examination, validation, and debugging of the compiler transformations. The paper is organized
around a case study, using the MetaPRL logical framework to compile an ML-like language to Intel
x86 assembly. We also present a scoped formalization of x86 assembly in which all registers are
immutable.

1 Introduction

The task of designing and implementing a compiler can be difficult even for a small language. There are
many phases in the translation from source to machine code, and an error in any one of these phases
can alter the semantics of the generated program. The use of programming languages that provide type
safety, pattern matching, and automatic storage management can reduce the compiler’s code size and
eliminate some common kinds of errors. However, many programming languages that appear well-suited
for compiler implementation, like ML [19], still do not address other issues, such as substitution and
preservation of scoping in the compiled program.

In this paper, we present an alternative approach, based on the use of higher-order abstract syntax
[15, 16] and term rewriting in a general-purpose logical framework. All program transformations, from
parsing to code generation, are cleanly isolated and specified as term rewrites. In our system, term

∗This work was supported in part by the DoD Multidisciplinary University Research Initiative (MURI) program admin-
istered by the Office of Naval Research (ONR) under Grant N00014-01-1-0765, the Defense Advanced Research Projects
Agency (DARPA), the United States Air Force, the Lee Center, and by NSF Grant CCR 0204193.

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
29 APR 2003 2. REPORT TYPE

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Formal Compiler Implementation in a Logical Framework

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Office of Naval Research,One Liberty Center,875 North Randolph Street
Suite 1425,Arlington,VA,22203-1995

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT
The task of designing and implementing a compiler can be a difficult and error-prone process. In this
paper, we present a new approach based on the use of higher-order abstract syntax and term rewriting in a
logical framework. All program transformations, from parsing to code generation, are cleanly isolated and
specified as term rewrites. This has several advantages. The correctness of the compiler depends solely on a
small set of rewrite rules that are written in the language of formal mathematics. In addition, the logical
framework guarantees the preservation of scoping, and it automates many frequently-occurring tasks
including substitution and rewriting strategies. As we show, compiler development in a logical framework
can be easier than in a general-purpose language like ML, in part because of automation, and also because
the framework provides extensive support for examination, validation, and debugging of the compiler
transformations. The paper is organized around a case study, using the MetaPRL logical framework to
compile an ML-like language to Intel x86 assembly. We also present a scoped formalization of x86
assembly in which all registers are immutable.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

53

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

rewrites specify an equivalence between two code fragments that is valid in any context. Rewrites are
bidirectional and neither imply nor presuppose any particular order of application. Rewrite application
is guided by programs in the meta-language of the logical framework.

There are many advantages to using formal rewrites. Program scoping and substitution are managed
implicitly by the logical framework; it is not possible to specify a program transformation that modifies
the program scope. Perhaps most importantly, the correctness of the compiler is dependent only on
the rewriting rules. Programs that guide the application of rewrites do not have to be trusted because
they are required to use rewrites for all program transformations. If the rules can be validated against
a program semantics, and if the compiler produces a program, that program will be correct relative
to those semantics. The role of the guidance programs is to ensure that rewrites are applied in the
appropriate order so that the output of the compiler contains only assembly.

The collection of rewrites needed to implement a compiler is small (hundreds of lines of formal
mathematics) compared to the entire code base of a typical compiler (often more than tens of thousands
of lines of code in a general-purpose programming language). Validation of the former set is clearly
easier. Even if the rewrite rules are not validated, it becomes easier to assign accountability to individual
rules.

The use of a logical framework has another major advantage that we explore in this paper: in many
cases it is easier to implement the compiler, for several reasons. The terminology of rewrites corresponds
closely to mathematical descriptions frequently used in the literature, decreasing time from concept
to implementation. The logical framework provides a great deal of automation, including efficient
substitution and automatic α-renaming of variables to avoid capture, as well as a large selection of
rewrite strategies to guide the application of program transformations. The compilation task is phrased
as a theorem-proving problem, and the logical framework provides a means to examine and debug the
effects of the compilation process interactively. The facilities for automation and examination establish
an environment where it is easy to experiment with new program transformations and extensions to the
compiler.

In fairness, formal compilation also has potential disadvantages. The use of higher-order abstract
syntax, in which variables in the programming language are represented as variables in the logical
language, means that variables cannot be manipulated directly in the formal system; operations that
modify the program scope, such as capturing substitution, are difficult if not impossible to express
formally. In addition, global program transformations, in which several parts of a program are modified
simultaneously, can sometimes be difficult to express with term rewriting.

The most significant impact of using a formal system is that program representations must permit
a substitution semantics. Put another way, the logical framework requires the development of func-
tional intermediate representations, where heap locations may be mutable, but variables are not. This
potentially has a major effect on the formalization of imperative languages, including assembly lan-
guage, where registers are no longer mutable. This seeming contradiction can be resolved, as we show
in the second half of this paper, but it does require a departure from the majority of the literature on
compilation methods.

In this paper, we explore these problems and show that formal compiler development is feasible,
perhaps easy. We do not specifically address the problem of compiler verification in this paper; our main
objective is to develop the models and methods needed during the compilation process. The format
of this paper is organized around a case study, where we develop a compiler that generates Intel x86
machine code for an ML-like language using the MetaPRL logical framework [4, 6, 8]. The compiler is
fully implemented and online as part of the Mojave research project [7]. This document is generated
from the program sources (MetaPRL provides a form of literate programming), and the complete source
code is available online at http://metaprl.org/ as well as in the technical report.

2

http://metaprl.org/

1.1 Organization

The translation from source code to assembly is usually done in three major stages. The parsing phase
translates a source file (a sequence of characters) into an abstract syntax tree; the abstract syntax
is translated to an intermediate representation; and the intermediate representation is translated to
machine code. The reason for the intermediate representation is that many of the transformations in
the compiler can be stated abstractly, independent of the source and machine representations.

The language that we are using as an example (see Section 2) is a small language similar to ML
[19]. To keep the presentation simple, the language is untyped. However, it includes higher-order and
nested functions, and one necessary step in the compilation process is closure conversion, in which the
program is modified so that all functions are closed. The high-level outline of the paper is as follows.

• Section 2 parsing
• Section 3 intermediate representation (IR)
• Section 4 Intel x86 assembly code generation
• Section 6 Related work

Before describing each of these stages, we first introduce the terminology and syntax of the formal
system in which we define the program rewrites.

1.2 Terminology

All logical syntax is expressed in the language of terms. The general syntax of all terms has three parts.
Each term has 1) an operator-name (like “sum”), which is a unique name identifying the kind of term;
2) a list of parameters representing constant values; and 3) a set of subterms with possible variable
bindings. We use the following syntax to describe terms:

opname︸ ︷︷ ︸
operator name

[p1; · · · ; pn]︸ ︷︷ ︸
parameters

{~v1.t1; · · · ;~vm.tm}︸ ︷︷ ︸
subterms

Displayed form Term
1 number[1]{}

λx.b lambda[]{ x. b }
f(a) apply[] { f; a }
x + y sum[]{ x; y }

A few examples are shown in the table. Numbers have an integer parameter. The lambda term
contains a binding occurrence: the variable x is bound in the subterm b.

Term rewrites are specified in MetaPRL using second-order variables, which explicitly define scoping
and substitution [15]. A second-order variable pattern has the form v[v1; · · · ; vn], which represents
an arbitrary term that may have free variables v1, . . . , vn. The corresponding substitution has the
form v[t1; · · · ; tn], which specifies the simultaneous, capture-avoiding substitution of terms t1, . . . , tn for
v1, . . . , vn in the term matched by v. For example, the rule for β-reduction is specified with the following
rewrite.

[beta] (λx.v1[x]) v2 ←→ v1[v2]

The left-hand-side of the rewrite is a pattern called the redex. The v1[x] stands for an arbitrary
term with free variable x, and v2 is another arbitrary term. The right-hand-side of the rewrite is called
the contractum. The second-order variable v1[v2] substitutes the term matched by v2 for x in v1. A

3

term rewrite specifies that any term that matches the redex can be replaced with the contractum, and
vice-versa.

Rewrites that are expressed with second-order notation are strictly more expressive than those that
use the traditional substitution notation. The following rewrite is valid in second-order notation.

[const] (λx.v[]) 1←→ (λx.v[]) 2

In the context λx, the second-order variable v[] matches only those terms that do not have x as a free
variable. No substitution is performed; the β-reduction of both sides of the rewrite yields v[] ←→ v[],
which is valid reflexively. Normally, when a second-order variable v[] has an empty free-variable set [],
we omit the brackets and use the simpler notation v.

MetaPRL is a tactic-based prover that uses OCaml [20] as its meta-language. When a rewrite is
defined in MetaPRL, the framework creates an OCaml expression that can be used to apply the rewrite.
Code to guide the application of rewrites is written in OCaml, using a rich set of primitives provided by
MetaPRL. MetaPRL automates the construction of most guidance code; we describe rewrite strategies
only when necessary. For clarity, we will describe syntax and rewrites using the displayed forms of
terms.

The compilation process is expressed in MetaPRL as a judgment of the form Γ ` compilable(e),
which states the the program e is compilable in any logical context Γ. The meaning of the compilable(e)
judgment is defined by the target architecture. A program e′ is compilable if it is a sequence of valid
assembly instructions. The compilation task is a process of rewriting the source program e to an
equivalent assembly program e′.

2 Parsing

In order to use the formal system for program transformation, source-level programs expressed as
sequences of characters must first be translated into a term representation for use in the MetaPRL
framework. We assume that the source language can be specified using a context-free grammar, and
traditional lexing and parsing methods can be used to perform the translation.

MetaPRL provides these capabilities using the integrated Phobos [3] generic lexer and parser, which
enables users to specify parts of their logical theories using their own notation. For instance, we can
use actual program notation (instead of the uniform term syntax) to express program transformations
in rewrite rules and we can specify test programs in source notation.

A Phobos language specification resembles a typical parser definition in YACC [9], except that
semantic actions for productions use term rewriting. Phobos employs informal rewriting, which means
that it uses a rewriting engine that can create new variable bindings and perform capturing substitution.

In Phobos, the lexer for a language is specified as a set of lexical rewrite rules of the form regex ←→
term, where regex is a special term that is created for every token and contains the matched input as
a string parameter as well as a subterm containing the position in the source text, which can be used
to produce more informative messages if an error is detected. The following example demonstrates a
single lexer clause, that translates a nonnegative decimal number to a term with operator name number
and a single integer parameter.

NUM = ”[0− 9] + ” {token[i]{pos} ←→ number[i]}

The parser is defined as a set of grammar productions. For each grammar production in the program
syntax shown in Figure 1, we define a production in the form

4

op ::= +| − | ∗ |/ Binary operators
| = | <> | < | ≤ | > | ≥

e ::= >|⊥ Booleans
| i Integers
| v Variables
| e op e Binary expressions
| λv.e Anonymous functions
| if e then e else e Conditionals
| e[e] Subscripting
| e[e]← e Assignment
| e; e Sequencing
| e(e1, . . . , en) Application
| let v = e in e Let definitions
| let rec f1(v1, . . . , vn) = e Recursive functions

. . .
and fn(v1, . . . , vn) = e

Figure 1: Program syntax

S ::= S1 . . . Sn ←→ term

where the symbols Si may be annotated with a term pattern. For instance, the production for the
let-expression is defined with the following production and semantic action.

exp ::= LET ID 〈v〉 EQ exp 〈e〉 IN exp 〈rest〉
←→ let v = e in rest

Phobos constructs an LALR(1) parser from these specifications that maintains a stack of terms and
applies the associated rewrite rule each time a production is reduced by replacing the corresponding
terms on the stack with the result. For the parser to accept, the stack must contain a single term
corresponding to the start symbol of the grammar.

It may not be feasible during parsing to create the initial binding structure of the programs. For
instance, in our implementation function parameters are collected as a list and are not initially bound in
the function body. Furthermore, for mutually recursive functions, the function variables are not initially
bound in the functions’ bodies. For this reason, the parsing phases is usually followed by an additional
rewrite phase that performs these operations using the informal rewriting engine. The source text is
replaced with the resulting term on completion.

3 Intermediate representation

The intermediate representation of the program must serve two conflicting purposes. It should be a
fairly low-level language so that translation to machine code is as straightforward as possible. However,
it should be abstract enough that program transformations and optimizations need not be overly con-
cerned with implementation detail. The intermediate representation we use is similar to the functional
intermediate representations used by several groups [1, 5, 18], in which the language retains a similarity

5

binop ::= +| − | ∗ |/ Binary arithmetic
relop ::= = | <> | ≤ | < | ≥ | > Binary relations

l ::= string Function label

a ::= >|⊥ Boolean values
| i Integers
| v Variables
| a1 binop a2 Binary arithmetic
| a1 relop a2 Binary relations
| R.l Function labels

e ::= let v = a in e Variable definition
| if a then e1 else e2 Conditional
| let v = (a1, . . . , an) in e Tuple allocation
| let v = a1[a2] in e Subscripting
| a1[a2]← a3; e Assignment
| let v = a(a1, . . . , an) in e Function application
| letc v = a1(a2) in e Closure creation
| return a Return a value
| a(a1, . . . , an) Tail-call
| let rec R = d in e Recursive functions

eλ ::= λv.eλ|λv.e Functions
d ::= fun l = eλ and d Function definitions
| ε

Figure 2: Intermediate Representation

to an ML-like language where all intermediate values apart from arithmetic expressions are explicitly
named.

In this form, the IR is partitioned into two main parts: “atoms” define values like numbers, arith-
metic, and variables; and “expressions” define all other computation. The language includes arithmetic,
conditionals, tuples, functions, and function definitions, as shown in Figure 2.

Function definitions deserve special mention. Functions are defined using the let rec R = d in e
term, where d is a list of mutually recursive functions, and R represents a recursively defined record
containing these functions. Each of the functions is labeled, and the term R.l represents the function
with label l in record R.

While this representation has an easy formal interpretation as a fixpoint of the single variable R, it
is awkward to use, principally because it violates the rule of higher-order abstract syntax: namely, that
(function) variables be represented as variables in the meta-language. In some sense, this representation
is an artifact of the MetaPRL term language: it is not possible, given the term language described in
Section 1.2, to define more than one recursive variable at a time. We are currently investigating
extending the meta-language to address this problem.

6

3.1 AST to IR conversion

The main difference between the abstract syntax representation and the IR is that intermediate ex-
pressions in the AST do not have to be named. In addition, the conditional in the AST can be used
anywhere an expression can be used (for instance, as the argument to a function), while in the IR, the
branches of the conditional must be terminated by a return a expression or tail-call.

The translation from AST to IR is straightforward, but we use it to illustrate a style of translation we
use frequently. The term IR{e1; v.e2[v]} (displayed as [[e1]]IRv.e2[v]) is the translation of an expression
e1 to an IR atom, which is substituted for v in expression e2[v]. The translation problem is expressed
through the following rule, which states that a program e is compilable if the program can be translated
to an atom, returning the value as the result of the program.

Γ ` compilable([[e]]IRv.return v)
Γ ` compilable(e)

For many AST expressions, the translation to IR is straightforward. The following rules give a few
representative examples.

[int] [[i]]IRv.e[v]←→ e[i]
[var] [[v1]]IRv2.e[v2]←→ e[v1]
[add] [[e1 + e2]]IRv.e[v]
←→ [[e1]]IRv1.[[e2]]IRv2.e[v1 + v2]
[set] [[e1[e2]← e3]]IRv.e4[v]
←→ [[e1]]IRv1.

[[e2]]IRv2.
[[e3]]IRv3.
v1[v2]← v3;
e4[⊥]

For conditionals, code duplication is avoided by wrapping the code after the conditional in a function,
and calling the function at the tail of each branch of the conditional.

[if] [[if e1 then e2 else e3]]IRv.e4[v]
←→ let rec R = fun g = λv.e4[v] and ε in

[[e1]]IRv1.
if v1 then [[e2]]IRv2.(R.g(v2)) else [[e3]]IRv3.(R.g(v3))

For functions, the post-processing phase converts recursive function definitions to the record form,
and we have the following translation, using the term [[d]]IR to translate function definitions. In general,
anonymous functions must be named except when they are outermost in a function definition. The post-
processing phase produces two kinds of λ-abstractions, the λpv.e[v] is used to label function parameters
in recursive definitions, and the λv.e[v] term is used for anonymous functions.

7

[letrec] [[let rec R = d in e1]]IRv.e2[v]
←→ let rec R = [[d]]IR in [[e1]]IRv.e2[v]
[fun] [[fun l = e and d]]IR
←→ fun l = [[e]]IRv.return v and [[d]]IR
[param] [[λpv1.e1[v1]]]IRv2.e2[v2]
←→ λv1.([[e1[v1]]]IRv2.e2[v2])
[abs] [[λv1.e1[v1]]]IRv2.e2[v2]
←→ let rec R =

fun g = λv1.[[e1[v1]]]IRv3.return v3 and ε
in e2[R.g]

3.2 CPS conversion

CPS conversion is an optional phase of the compiler that converts the program to continuation-passing
style. That is, instead of returning a value, functions pass their results to a continuation function
that is passed as an argument. In this phase, all functions become tail-calls, and all occurrences of
let v = a1(a2) in e and return a are eliminated. The main objective in CPS conversion is to pass the
result of the computation to a continuation function. We state this formally as the following inference
rule, which states that a program e is compilable if for all functions c, the program [[e]]c is compilable.

Γ, c: exp ` compilable([[e]]c)
Γ ` compilable(e)

The term [[e]]c represents the application of the c function to the program e, and we can use it to
transform the program e by migrating the call to the continuation downward in the expression tree.
Abstractly, the process proceeds as follows.

• First, replace each function definition f = λx.e[x] with a continuation form f = λc.λx.[[e[x]]]c
and simultaneously replace all occurrences of f with the partial application f [id], where id is the
identity function.

• Next, replace tail-calls [[f [id](a1, . . . , an)]]c with f(c, a1, . . . , an), and return statements
[[return a]]c with c(a).

• Finally, replace inline-calls [[let v = f [id](a1, . . . , an) in e]]c with the continuation-passing version
let rec R = fun g = λv.[[e]]c and ε in f(g, a1, . . . , an).

For many expressions, CPS conversion is a straightforward mapping of the CPS translation, as
shown by the following five rules.

[atom] [[let v = a in e[v]]]c ←→ let v = a in [[e[v]]]c

[tuple] [[let v = (a1, . . . , an) in e[v]]]c
←→ let v = (a1, . . . , an) in [[e[v]]]c
[letsub] [[let v = a1[a2] in e[v]]]c
←→ let v = a1[a2] in [[e[v]]]c

[setsub] [[a1[a2]← a3; e[v]]]c ←→ a1[a2]← a3; [[e[v]]]c

[if] [[if a then e1 else e2]]c
←→ if a then [[e1]]c else [[e2]]c

8

The modification of functions is the key part of the conversion. When a let rec R = d[R] in e[R]
term is converted, the goal is to add an extra continuation parameter to each of the functions in the
recursive definition. Conversion of the function definition is shown in the fundef rule, where the function
gets an extra continuation argument that is then applied to the function body.

In order to preserve the program semantics, we must then replace all occurrences of the function
with the term f [id], which represents the partial application of the function to the identity. This step
is performed in two parts: first the letrec rule replaces all occurrences of the record variable R with the
term R[id], and then the letfun rule replaces each function variable f with the term f [id].

[letrec] [[let rec R = d[R] in e[R]]]c
←→ let rec R = [[d[R[id]]]]c in [[e[R[id]]]]c
[fundef] [[fun l = λv.e[v] and d]]c
←→ fun l = λc.λv.[[e[v]]]c and [[d]]c

[enddef] [[ε]]c ←→ ε

[letfun] [[let v = R[id].l in e[v]]]c
←→ let v = R.l in [[e[v[id]]]]c

Non-tail-call function applications must also be converted to continuation passing form, as shown in
the apply rule, where the expression after the function call is wrapped in a continuation function and
passed as a continuation argument.

[apply] [[let v2 = v1[id](a) in e[v2]]]c
←→ let rec R = fun g = λv.[[e[v]]]c and ε in

let g = R.g in f(g; a)

In the final phase of CPS conversion, we can replace return statements with a call to the continua-
tion. For tail-calls, we replace the partial application of the function f [id] with an application to the
continuation.

[return] [[return a]]c ←→ c(a)
[tailcall] [[f [id](a1, . . . , an)]]c ←→ f(c, a1, . . . , an)

3.3 Closure conversion

The program intermediate representation includes higher-order and nested functions. The function
nesting must be eliminated before code generation, and the lexical scoping of function definitions must
be preserved when functions are passed as values. This phase of program translation is normally
accomplished through closure conversion, where the free variables for nested functions are captured
in an environment as passed to the function as an extra argument. The function body is modified so
that references to variables that were defined outside the function are now references to the environment
parameter. In addition, when a function is passed as a value, the function is paired with the environment
as a closure.

The difficult part of closure conversion is the construction of the environment, and the modification
of variables in the function bodies. We can formalize closure conversion as a sequence of steps, each of
which preserves the program’s semantics. In the first step, we must modify each function definition by
adding a new environment parameter. To represent this, we replace each let rec R = d in e term in
the program with a new term let recR with [f = ()] = d in e, where f is an additional parameter,
initialized to the empty tuple (), to be added to each function definition. Simultaneously, we replace

9

every occurrence of the record variable R with R(f), which represents the partial application of the
record R to the tuple f .

[frame] let rec R = d[R] in e[R]
←→ let recR with [f = ()] = d[R(f)] in e[R(f)]

The second part of closure conversion does the closure operation using two operations. For the first
part, suppose we have some expression e with a free variable v. We can abstract this variable using
a call-by-name function application as the expression let v = v in e, which reduces to e by simple
β-reduction.

[abs] e[v]←→ let v = v in e[v]

By selectively applying rule, we can quantify variables that occur free in the function definitions
d in a term let recR with [f = tuple] = d in e. The main closure operation is the addition of the
abstracted variable to the frame, using the following rewrite.

[close] let v = a in
let recR with [f = (a1, . . . , an)] =

d[R; v; f]
in e[R; v; f]

←→ let recR with [f = (a1, . . . , an, a)] =
let v = f [n + 1] in d[R; v; f]

in let v = a in e[R; v; f]

Once all free variables have been added to the frame, the let recR with [f = tuple] = d in e
rewritten to use explicit tuple allocation.

[alloc] let recR with [f = tuple] =
d[R; f]

in e[R; f]
←→ let rec R = frame(f, d[R; f]) in

let f = (tuple) in e[R; f]

The final step of closure conversion is to propagate the subscript operations into the function bodies.

[arg] frame(f, fun l = λv.e[f ; v] and d[f])
←→ fun l = λf.λv.e[f ; v] and frame(f, d[frame])
[sub] let v1 = a1[a2] in fun l = λv2.e[v1; v2] and d[v1]
←→ fun l = λv2. let v1 = a1[a2] in e[v1; v2] and

let v1 = a1[a2] in d[v1]

3.4 IR optimizations

Many optimizations on the intermediate representation are quite easy to express. For illustration, we
include two very simple optimizations: dead-code elimination and constant folding.

3.4.1 Dead code elimination

Formally, an expression e in a program p is dead if the removal of expression e does not change the
behavior of the program p. Complete elimination of dead-code is undecidable: for example, an expression

10

e is dead if no program execution ever reaches expression e. The most frequent approximation is based
on scoping: a let-expression let v = a in e is dead if v is not free in e. This kind of dead-code elimination
can be specified with the following set of rewrites.

[datom] let v = a in e←→ e
[dtuple] let v = (a1, . . . , an) in e←→ e
[dsub] let v = a1[a2] in e←→ e
[dcl] letc v = a1(a2) in e←→ e

The syntax of these rewrites depends on the second-order specification of substitution. Note that
the pattern e is not expressed as the second-order pattern e[v]. That is, v is not allowed to occur free
in e.

Furthermore, note that dead-code elimination of this form is aggressive. For example, suppose we
have an expression let v = a / 0 in e. This expression is considered as dead-code even though division
by 0 is not a valid operation. If the target architecture raises an exception on division by zero, this kind
of aggressive dead-code elimination is unsound. This problem can be addressed formally by partitioning
the class of atoms into two parts: those that may raise an exception, and those that do not, and applying
dead-code elimination only on the first class. The rules for dead-code elimination are the same as above,
where the calls of atom a refers only to those atoms that do not raise exceptions.

3.4.2 Constant-folding

Another simple class of optimizations is constant folding. If we have an expression that includes only
constant values, the expression may be computed at compile time. The following rewrite captures the
arithmetic part of this optimization, where [[op]] is the interpretation of the arithmetic operator in the
meta-language. Relations and conditionals can be folded in a similar fashion.

[binop] i binop j ←→ [[op]](i, j)
[relop] i relop j ←→ [[op]](i, j)
[ift] if > then e1 else e2 ←→ e1

[iff] if ⊥ then e1 else e2 ←→ e2

In order for these transformations to be faithful, the arithmetic must be performed over the numeric
set provided by the target architecture (our implementation, described in Section 4.2, uses 31-bit signed
integers).

For simple constants a, it is usually more efficient to inline the let v = a in e[v] expression as well.

[cint] let v = i in e[v]←→ e[i]
[cfalse] let v = ⊥ in e[v]←→ e[⊥]
[ctrue] let v = > in e[v]←→ e[>]
[cvar] let v2 = v1 in e[v2]←→ e[v1]

4 Scoped x86 assembly language

Once closure conversion has been performed, all function definitions are top-level and closed, and it
becomes possible to generate assembly code. When formalizing the assembly code, we continue to use
higher-order abstract syntax: registers and variables in the assembly code correspond to variables in
the meta-language. There are two important properties we must maintain. First, scoping must be
preserved: there must be a binding occurrence for each variable that is used. Second, in order to
facilitate reasoning about the code, variables/registers must be immutable.

11

These two requirements seem at odds with the traditional view of assembly, where assembly instruc-
tions operate by side-effect on a finite register set. In addition, the Intel x86 instruction set architecture
primarily uses two-operand instructions, where the value in one operand is both used and modified in
the same instruction. For example, the instruction ADD r1,r2 performs the operation r1 ← r1 + r2,
where r1 and r2 are registers.

To address these issues, we define an abstract version of the assembly language that uses a three
operand version on the instruction set. The instruction ADD v1, v2, λv3.e performs the abstract op-
eration let v3 = v1 + v2 in e. The variable v3 is a binding occurrence, and it is bound in body of the
instruction e. In our account of the instruction set, every instruction that modifies a register has a
binding occurrence of the variable being modified. Instructions that do not modify memory use the tra-
ditional non-binding form of the instruction. For example, the instruction ADD v1, (%v2); e performs
the operation (%v2)← (%v2) + v1, where (%v2) means the value in memory at location v2.

The complete abstract instruction set that we use is shown in Figure 3 (the Intel x86 architecture
includes a large number of complex instructions that we do not use). Instructions may use several forms
of operands and addressing modes.

• The immediate operand $i is a constant number i.

• The label operand $R.l refers to the address of the function in record R labeled l.

• The register operand %v refers to register/variable v.

• The indirect operand (%v) refers to the value in memory at location v.

• The indirect offset operand i(%v) refers to the value in memory at location v + i.

• The array indexing operand i1(%v1,%v2, i2) refers to the value in memory at location v1+v2∗i2+i1,
where i2 ∈ {1, 2, 4, 8}.

The instructions can be placed in several main categories.

• MOV instructions copy a value from one location to another. The instruction MOV o1, λv2.e[v2]
copies the value in operand o1 to variable v2.

• One-operand instructions have the forms inst1 o1; e (where o1 must be an indirect operand),
and inst1 v1, λv2.e. For example, the instruction INC (%r1); e performs the operation (%r1) ←
(%r1) + 1; e; and the instruction INC %r1, λr2.e performs the operation let r2 = r1 + 1 in e.

• Two-operand instructions have the forms inst2 o1, o2; e, where o2 must be an indirect operand;
and inst2 o1, v2, λv3.e. For example, the instruction ADD %r1, (%r2); e performs the operation
(%r2)← (%r2)+r1; e; and the instruction ADD o1, v2, λv3.e is equivalent to let v3 = o1+v2 in e.

• There are two three-operand instructions: one for multiplication and one for division, having the
form inst3 o1, v2, v3, λv4, v5.e. For example, the instruction DIV %r1, %r2, %r3, λr4, r5.e per-
forms the following operation, where (r2, r3) is the 64-bit value r2∗232+r3. The Intel specification
requires that r4 be the register eax , and r5 the register edx .

let r4 = (r2, r3)/r1 in
let r5 = (r2, r3) mod r1 in

e

12

l ::= string Function labels
r ::= eax |ebx |ecx |edx Registers
| esi |edi |esp|ebp

v ::= r|v1, v2, . . . Variables

om ::= (%v) Memory operands
| i(%v)
| i1(%v1,%v2, i2)

or ::= %v Register operand
o ::= om|or General operands

| $i Constant number
| $v.l Label

cc ::= = | <> | < | > | ≤ | ≥ Condition codes
inst1 ::= INC |DEC | · · · 1-operand opcodes
inst2 ::= ADD |SUB |AND | · · · 2-operand opcodes
inst3 ::= MUL|DIV 3-operand opcodes
cmp ::= CMP |TEST comparisons
jmp ::= JMP unconditional branch
jcc ::= JEQ |JLT |JGT | · · · conditional branch
e ::= MOV o, λv.e Copy
| inst1 om; e 1-operand mem inst
| inst1 or, λv.e 1-operand reg inst
| inst2 or, om; e 2-operand mem inst
| inst2 o, or, λv.e 2-operand reg inst
| inst3 o, or, or, λv1, v2.e 3-operand reg inst
| cmp o1, o2 Comparison
| jmp o(or; . . . ; or) Unconditional branch
| j cc then e1 else e2 Conditional branch

p | let rec R = d in p|e Programs
d | l = eλ and d|ε Function definition

eλ ::= λv.eλ|e Functions

Figure 3: Scoped Intel x86 instruction set

13

• The comparison operand has the form CMP o1, o2; e, where the processor’s condition code register
is modified by the instruction. We do not model the condition code register explicitly in our current
account. However, doing so would allow more greater flexibility during code-motion optimizations
on the assembly.

• The unconditional branch operation JMP o(o1, . . . , on) branches to the function specified by
operand o, with arguments (o1, . . . , on). The arguments are provided so that the calling convention
may be enforced.

• The conditional branch operation Jcc then e1 else e2 is a conditional. If the condition-code
matches the value in the processor’s condition-code register, then the instruction branches to
expression e1; otherwise it branches to expression e2.

• Functions are defined using the let rec R = d in e which corresponds exactly to the same
expression in the intermediate representation. The subterm d is a list of function definitions, and
e is an assembly program. Functions are defined with the λv.e, where v is a function parameter
in instruction sequence e.

4.1 Translation to concrete assembly

Since the instruction set as defined is abstract, and contains binding structure, it must be translated
before actual generation of machine code. The first step in doing this is register allocation: every variable
in the assembly program must be assigned to an actual machine register. This step corresponds to an
α-conversion where variables are renamed to be the names of actual registers; the formal system merely
validates the renaming. We describe this phase in the section on register allocation 4.3.

The final step is to generate the actual program from the abstract program. This requires only local
modifications, and is implemented during printing of the program (that is, it is implemented when the
program is exported to an external assembler). The main translation is as follows.

• Memory instructions inst1 om; e, inst2 or, om; e, and cmp o1, o2; e can be printed directly.

• Register instructions with binding occurrences require a possible additional mov instruction. For
the 1-operand instruction inst1 or, λr.e, if or = %r, then the instruction is implemented as
inst1 r. Otherwise, it is implemented as the two-instruction sequence:

MOV or,%r
inst1 %r

Similarly, the two-operand instruction inst2 o, or, λr.e may require an addition mov from or to
r, and the three-operand instruction inst3 o, or1, or2, λr1, r2.e may require two additional mov
instructions.

• The JMP o(o1, . . . , on) prints as JMP o. This assumes that the calling convention has been satisfied
during register allocation, and all the arguments are in the appropriate places.

• The Jcc then e1 else e2 instruction prints as the following sequence, where cc′ is the inverse of
cc, and l is a new label.

Jcc′ l
e1

l: e2

14

[false] [[⊥]]av.e[v]←→ e[$1]
[true] [[>]]av.e[v]←→ e[$3]
[int] [[i]]av.e[v]←→ e[$i ∗ 2 + 1]
[var] [[v1]]av2.e[v2]←→ e[%v]
[label] [[R.l]]av.e[v]←→ e[$R.l]
[add] [[a1 + a2]]av.e[v]
←→ [[a1]]av1.

[[a2]]av2.
ADD v2, v1, λtmp.
DEC %tmp, λsum.
e[%sum]

[div] [[a1 / a2]]av.e[v]
←→ [[a1]]av1.

[[a2]]av2.
SAR $1, v1, λv′

1.
SAR $1, v2, λv′

2.
MOV $0, λv3.
DIV %v′

1, %v′
2, %v′

3, λq′, r′.
SHL $1, %q′, λq′′.
OR $1, %q′′, λq.
e[%q]

Figure 4: Translation of atoms to x86 assembly

• A function definition l = e and d in a record let rec R = d in e is implemented as a labeled
assembly expression R.l: e. We assume that the calling convention has been established, and the
function abstraction λv.e ignores the parameter v, assembling only the program e.

The compiler back-end then has three stages: 1) code generation, 2) register allocation, and 3)
peephole optimization, described in the following sections.

4.2 Assembly code generation

The production of assembly code is primarily a straightforward translation of operations in the interme-
diate code to operations in the assembly. There are two main kinds of translations: translations from
atoms to operands, and translation of expressions into instruction sequences. We express these trans-
lations with the term [[e]]a, which is the translation of the IR expression e to an assembly expression;
and [[a]]av.e, which produces the assembly operand for the atom a and substitutes it for the variable v
in expression e.

4.2.1 Atom translation

The translation of atoms is primarily a translation of the IR names for values and the assembly names
for operands. A representative set of atom translations is shown in Figure 4. Since the language is
untyped, we use a 31-bit representation of integers, where the least-significant-bit is always set to 1.
Since pointers are always word-aligned, this allows the garbage collector to differentiate between integers
and pointers. The division operation is the most complicated translation: first the operands a1 and a2

15

[atom] [[let v = a in e[v]]]a
←→ [[a]]av′.

MOV v′, λv.
[[e[v]]]a

[if1] [[if a then e1 else e2]]a
←→ [[a]]atest .

CMP $0, test
J [[e1]]a then [[e2]]a else

[if2] [[if a1 op a2 then e1 else e2]]a
←→ [[a1]]av1.

[[a2]]av2.
CMP v1, v2

J [[op]]a then [[e1]]a else [[e2]]a
[sub] [[let v = a1[a2] in e[v]]]a
←→ [[a1]]av1.

[[a2]]av2.
MOV v1, λtuple.
MOV v2, λindex ′.
SAR $1, %index ′, λindex .
MOV − 4(%tuple), λsize ′.
SAR $2, %size ′, λsize.
CMP size, index
JAE then bounds.error else
MOV 0(%tuple,%index , 4), λv.
[[e[v]]]a

Figure 5: Translation of expressions to x86 assembly

are shifted to obtain the standard integer representation, the division operation is performed, and the
result is converted to a 31-bit representation.

4.2.2 Expression translation

Expressions translate to sequences of assembly instructions. A representative set of translations in
shown in Figure 5. The translation of let v = a in e[v] is the simplest case, the atom a is translated into
an operand v′, which is copied to a variable v (since the expression e[v] assumes v is a variable), and
the rest of the code e[v] is translated. Conditionals translate into comparisons followed by a conditional
branch.

The memory operations shown in Figure 6 are among the most complicated translations. For the
runtime, we use a contiguous heap and a copying garbage collector. The representation of all memory
blocks in the heap includes a header word containing the number of bytes in the block (the number of
bytes is always a multiple of the word size), following by one word for each field. A pointer to a block
points to the first field of the block (the word after the header word). The heap area itself is contiguous,
delimited by base and limit pointers; the next allocation point is in the next pointer. These pointers are
accessed through the context[name] pseudo-operand, which is later translated to an absolute memory
address.

During a subscript operation, shown in the sub translation, the index is compared against the number

16

[alloc] [[let v = (tuple) in e[v]]]a
←→ reserve($ | tuple |)

MOV context[next], λv.
ADD $(| tuple | +1) ∗ 4, context[next]
MOV $ | tuple | ∗4, (%v)
ADD $4, %v, λp.
store tuple(p, 0, tuple);
[[e[v]]]a

[closure] [[letc v = a1(a2) in e[v]]]a
←→ reserve($3)

MOV context[next], λv.
ADD $12, context[next]
MOV $8, (%v)
[[a1]]av1.
[[a2]]av2.
MOV v1, 4(%v)
MOV v2, 8(%v)
ADD $4, %v, λp.
[[e[p]]]a

[call] [[′a(args)]]a
←→ [[a]]aclosure.

MOV 4(%closure), λenv .
copy args((), args)λvargs.
JMP (%closure)(vargs)

Figure 6: Translation of memory operations to x86 assembly

[reserve] reserve(i); e
←→ MOV context[limit], λlimit .

SUB context[next], %limit, λfree.
CMP i, %free
Jb then gc(i) else e

[stuple1] store tuple(p, i, (a :: args)); e
←→ [[a]]av.

MOV v, i(%p)
store tuple(p, i + 4, args); e

[stuple2] store tuple(p, i, ()); e←→ e
[copy1] copy args((a :: args), vargs)λv.e[v]
←→ [[a]]av′.

MOV v′, λv.
copy args(args, (%v :: vargs))λv.e[v]

[copy2] copy args((), vargs)λv.e[v]←→ e[reverse(vargs)]

Figure 7: Auxiliary terms for x86 code generation

17

of words in the block as indicated in the header word, and a bounds-check exception is raised if the index
is out-of-bounds (denoted with the instruction JAE then bounds.error else). When a block of memory
is allocated in the alloc and closure rules, the first step reserves storage with the reserve(i) term,
and then the data is allocated and initialized. Figure 7 shows the implementation of some of the helper
terms: the reserve(i) expression determines whether sufficient storage is present for an allocation of i
bytes, and calls the garbage collector otherwise; the store tuple(p, i, args); e term generates the code to
initialize the fields of a tuple from a set of arguments; and the copy args(args, vargs)λv.e term copies
the argument list in args into registers.

4.3 Register allocation

Register allocation is one of the easier phases of the compiler formally: the main objective of register
allocation is to rename the variables in the program to use register names. The formal problem is just an
α-conversion, which can be checked readily by the formal system. From a practical standpoint, however,
register allocation is a NP-complete problem, and the majority of the code in our implementation is
devoted to a Chaitin-style [2] graph-coloring register allocator. These kinds of allocators have been well-
studied, and we do not discuss the details of the allocator here. The overall structure of the register
allocator algorithm is as follows.

1. Given a program p, run a register allocator R(p).

2. If the register allocator R(p) was successful, it returns an assignment of variables to register names;
α-convert the program using this variable assignment, and return the result p′.

3. Otherwise, if the register allocator R(p) was not successful, it returns a set of variables to “spill”
into memory. Rewrite the program to add fetch/store code for the spilled registers, generating a
new program p′, and run register allocation R(p′) on the new program.

Part 2 is a trivial formal operation (the logical framework checks that p′ = p). The generation of
spill code for part 3 is not trivial however, as we discuss in the following section.

4.4 Generation of spill code

The generation of spill code can affect the performance of a program dramatically, and it is important
to minimize the amount of memory traffic. Suppose the register allocator was not able to generate
a register assignment for a program p, and instead it determines that variable v must be placed in
memory. We can allocate a new global variable, say spill i for this purpose, and replace all occurrences
of the variable with a reference to the new memory location. This can be captured by rewriting the
program just after the binding occurrences of the variables to be spilled. The following two rules give
an example.

[smov] MOV o, λv.e[v]←→ MOV o, λspill i.e[spill i]
[sinst2] inst2 o, or, λv.e[v]
←→ MOV or, λspill i.

inst2 o, spill i
e[spill i]

However, this kind of brute-force approach spills all of the occurrences of the variable, even those
occurrences that could have been assigned to a register. Furthermore, the spill location spill i would

18

os ::= spill[v, s] Spill operands
| spill[s]

e ::= SPILL or, λs.e[s] New spill
| SPILL os, λv.e[v] Get the spilled value

Figure 8: Spill pseudo-operands and instructions

presumably be represented as the label of a memory location, not a variable, allowing a conflicting
assignment of another variable to the same spill location.

To address both of these concerns, we treat spill locations as variables, and introduce scoping for
spill variables. We introduce two new pseudo-operands, and two new instructions, shown in Figure
8. The instruction SPILL or, λs.e[s] generates a new spill location represented in the variable s, and
stores the operand or in that spill location. The operand spill[v, s] represents the value in spill location
s, and it also specifies that the values in spill location s and in the register v are the same. The
operand spill[s] refers the the value in spill location s. The value in a spill operand is retrieved with
the SPILL os, λv.e[v] and placed in the variable v.

The actual generation of spill code then proceeds in two main phases. Given a variable to spill, the
first phase generates the code to store the value in a new spill location, then adds copy instruction to
split the live range of the variable so that all uses of the variable refer to different freshly-generated
operands of the form spill[v, s]. For example, consider the following code fragment, and suppose the
register allocator determines that the variable v is to be spilled, because a register cannot be assigned
in code segment 2.

AND o, or, λv.
...code segment 1...
ADD %v, o
...code segment 2...
SUB %v, o
...code segment 3...
OR %v, o

The first phase rewrites the code as follows. The initial occurrence of the variable is spilled into
a new spill location s. The value is fetched just before each use of the variable, and copied to a new
register. Note that the later uses refer to the new registers, creating a copying daisy-chain, but the
registers have not been actually eliminated.

AND o, or, λv1.
SPILL %v1, λs.
...code segment 1...
SPILL spill[v1, s], λv2.
ADD %v2, o
...code segment 2...
SPILL spill[v2, s], λv3.
SUB %v3, o
...code segment 3...
SPILL spill[v3, s], λv4.
OR %v, o

19

Once the live range is split, the register allocator has the freedom to spill only part of the live range.
During the second phase of spilling, the allocator will determine that register v2 must be spilled in code
segment 2, and the spill[v2, s] operand is replaced with spill[s] forcing the fetch from memory, not
the register v2. Register v2 is no longer live in code segment 2, easing the allocation task without also
spilling the register in code segments 1 and 3.

4.5 Formalizing spill code generation

The formalization of spill code generation can be performed in three parts. The first part generates
new spill locations (line 2 in the code sequence above); the second part generates live-range splitting
code (lines 4, 7, and 10); and the third part replaces operands of the form spill[v, s] with spill[s] when
requested by the garbage collector.

The first part requires a rewrite for each kind of instruction that contains a binding occurrence of
a variable. The following two rewrites are representative examples. Note that all occurrences of the
variable v are replaced with spill[v, s], potentially generating operands like i(%spill[v, s]). These kinds
of operands are rewritten at the end of spill-code generation to their original form, e.g. i(%v).

[smov] MOV or, λv.e[v]
←→ MOV or, λv.

SPILL %v, λs.
e[spill[v, s]]

[sinst2] inst2 o, or, λv.e[v]
←→ inst2 o, or, λv.e[v]

SPILL %v, λs.
e[spill[v, s]]

The second rewrite splits a live range of a spill at an arbitrary point. This rewrite applies to any
program that contains an occurrence of an operand spill[v1, s], and translates it to a new program that
fetches the spill into a new register v2 and uses the new spill operand spill[v2, s] in the remainder of
the program. This rewrite is selectively applied before any instruction that uses an operand spill[v1, s].

[split] e[spill[v1, s]]
←→ SPILL spill[v1, s], λv2.e[spill[v2, s]]

In the third and final phase, when the register allocator determines that a variable should be spilled,
the spill[v, s] operands are selectively eliminated with the following rewrite.

[spill] spill[v, s]←→ spill[s]

4.6 Assembly optimization

There are several simple optimizations that can be performed on the generated assembly, including
dead-code elimination and reserve coalescing. Dead-code elimination has a simple specification: any
instruction that defines a new binding variable can be eliminated if the variable is never used. The
following rewrites capture this property.

[dmov] MOV o, λv.e←→ e
[dinst1] inst1 or, λv.e←→ e
[dinst2] inst2 o, or, λv.e←→ e
[dinst3] inst3 o, or1, or2, λv1, v2.e←→ e

20

As we mentioned in Section 3.4, this kind of dead-code elimination should not be applied if the
instruction being eliminated can raise an exception.

Another useful optimization is the coalescing of reserve(i) instructions, which call the garbage
collector if i bytes of storage are not available. In the current version of the language, all reservations
specify a constant number of bytes of storage, and these reservations can be propagated up the expression
tree and coalesced. The first step is an upward propagation of the reserve statement. The following
rewrites illustrate the process.

[rmov] MOV o, λv.reserve(i); e[v]
←→ reserve(i);MOV o, λv.e[v]
[rinst2] inst2 o, or, λv.reserve(i); e[v]
←→ reserve(i); inst2 o, or, λv.e[v]

Adjacent reservations can also be coalesced.

[rres] reserve(i1); reserve(i2); e←→ reserve(i1 + i2); e

Two reservations at a conditional boundary can also be coalesced. To ensure that both branches
have a reserve, it is always legal to introduce a reservation for 0 bytes of storage.

[rif] Jcc then reserve(i1); e1 else reserve(i2); e2

←→ reserve(max (i1; i2)); Jcc then e1 else e2

[rzero] e←→ reserve(0); e

5 Summary and Future Work

One of the points we have stressed in this presentation is that the implementation of formal compilers is
easy, perhaps easier than traditional compiler development using a general-purpose language. This case
study presents a convincing argument based on the authors’ previous experience implementing compilers
using traditional methods. The formal process was easier to specify and implement, and MetaPRL
provided a great deal of automation for frequently occurring tasks. In most cases, the implementation
of a new compiler phase meant only the development of new rewrite rules. There is very little of the
“grunge” code that plagues traditional implementations, such as the maintenance of tables that keep
track of the variables in scope, code-walking procedures to apply a transformation to the program’s
subterms, and other kinds of housekeeping code.

As a basis of comparison, we can compare the formal compiler in this paper to a similar native-code
compiler for a fragment of the Java language we developed as part of the Mojave project [7]. The Java
compiler is written in OCaml, and uses an intermediate representation similar to the one presented
in this paper, with two main differences: the Java intermediate representation is typed, and the x86
assembly language is not scoped.

Figure 9 gives a comparison of some of the key parts of both compilers in terms of lines of code,
where we omit code that implements the Java type system and class constructs. The formal compiler
columns list the total lines of code for the term rewrites, as well as the total code including rewrite
strategies. The size of the total code base in the formal compiler is still quite large due to the extensive
code needed to implemented the graph coloring algorithm for the register allocator. Preliminary tests
suggest that performance of programs generated from the formal compiler is comparable, sometimes
better than, the Java compiler due to a better spilling strategy.

The work presented in this paper took roughly one person-week of effort from concept to imple-
mentation, while the Java implementation took roughly three times as long. It should be noted that,

21

Description Formal compiler Java
Rewrites Total

CPS conversion 44 347 338
Closure conversion 54 410 1076
Code generation 214 648 1012
Total code base 484 10000 12000

Figure 9: Code comparison

while the Java compiler has been stable for about a year, it still undergoes periodic debugging. Register
allocation is especially problematic to debug in the Java compiler, since errors are not caught at compile
time, but typically cause memory faults in the generated program.

This work is far from complete. The current example serves as a proof of concept, but it remains
to be seen what issues will arise when the formal compilation methodology is applied to more complex
programming languages. For future work, we intend to approach the problem of developing and validat-
ing formal compilers in three steps. The first step is the development of typed intermediate languages.
These languages admit a broader class of rewrite transformations that are conditioned on well-typed
programs, and the typed language serves as a launching point for compiler validation. The second step
is to develop a semantics of the intermediate language and validate the rewrite rules for a small source
language similar to the one presented here. It is not clear whether the same properties should be applied
to the assembly language—whether the assembly language should be typed, and whether it is feasible to
develop a simple formal model of the target architecture that will allow the code generation and register
allocations phases to be verified. The final step is to extend the source language to one resembling a
modern general-purpose language.

6 Related work

The use of higher-order abstract syntax, logical environments, and term rewriting for compiler imple-
mentation and validation are not new areas individually.

Term rewriting has been successfully used to describe programming language syntax and semantics,
and there are systems that provide efficient term representations of programs as well as rewrite rules for
expressing program transformations. For instance, the ASF+SDF environment [11] allows the programmer
to construct the term representation of a wide variety of programming syntax and to specify equations
as rewrite rules. These rewrites may be conditional or unconditional, and are applied until a normal
form is reached. Using equations, programmers can specify optimizations, program transformations,
and evaluation. The ASF+SDF system targets the generation of informal rewriting code that can be used
in a compiler implementation.

Liang [10] implemented a compiler for a simple imperative language using a higher-order abstract
syntax implementation in λProlog. Liang’s approach includes several of the phases we describe here,
including parsing, CPS conversion, and code generation using a instruction set defined using higher-
abstract syntax (although in Liang’s case, registers are referred to indirectly through a meta-level store,
and we represent registers directly as variables). Liang does not address the issue of validation in
this work, and the primary role of λProlog is to simplify the compiler implementation. In contrast to
our approach, in Liang’s work the entire compiler was implemented in λProlog, even the parts of the
compiler where implementation in a more traditional language might have been more convenient (such
as register allocation code).

22

FreshML [17] adds to the ML language support for straightforward encoding of variable bindings and
alpha-equivalence classes. Our approach differs in several important ways. Substitution and testing for
free occurrences of variables are explicit operations in FreshML, while MetaPRL provides a convenient
implicit syntax for these operations. Binding names in FreshML are inaccessible, while only the formal
parts of MetaPRL are prohibited from accessing the names. Informal portions—such as code to print
debugging messages to the compiler writer, or warning and error messages to the compiler user—can
access the binding names, which aids development and debugging. FreshML is primarily an effort to
add automation; it does not address the issue of validation directly.

Previous work has also focused on augmenting compilers with formal tools. Instead of trying to
split the compiler into a formal part and a heuristic part, one can attempt to treat the whole compiler
as a heuristic adding some external code that would watch over what the compiler is doing and try to
establish the equivalence of the intermediate and final results. For example, the work of Necula and Lee
[14, 13] has led to effective mechanisms for certifying the output of compilers (e.g., with respect to type
and memory-access safety), and for verifying that intermediate transformations on the code preserve
its semantics. While these approaches certify the code and ease the debugging process (errors can be
flagged at compile time rather than at run-time), it is not clear that they simplify the implementation
task.

There have been efforts to present more functional accounts of assembly as well. Morrisett et. al.
[12] developed a typed assembly language capable capable of supporting many high-level programming
constructs and proof carrying code. In this scheme, well-typed assembly programs cannot “go wrong.”

23

7 Source listing

The following sections provide the programming documentation generated by MetaPRL from the source
code.

8 M ir module

This module defines the intermediate language for the M language. Here is the abstract syntax:

(* Values *)
v ::= i (integers)

| b (booleans)
| v (variables)
| fun v -> e (functions)
| (v1, v2) (pairs)

(* Atoms (functional expressions) *)
a ::= i (integers)

| b (booleans)
| v (variables)
| a1 op a2 (binary operation)
| fun x -> e (unnamed functions)

(* Expressions *)
e ::= let v = a in e (LetAtom)

| f(a) (TailCall)
| if a then e1 else e2 (Conditional)
| let v = a1[a2] in e (Subscripting)
| a1[a2] <- a3; e (Assignment)

(* These are eliminated during CPS *)
| let v = f(a) in e (Function application)
| return a

A program is a set of function definitions and an program expressed in a sequent. Each function
must be declared, and defined separately.

8.1 Parents

extends M util

8.2 Terms

Binary operators.

24

declare M ir!AddOp (displayed as M ir!AddOp)
declare M ir!SubOp (displayed as M ir!SubOp)
declare M ir!MulOp (displayed as M ir!MulOp)
declare M ir!DivOp (displayed as M ir!DivOp)
declare M ir!LtOp (displayed as M ir!LtOp)
declare M ir!LeOp (displayed as M ir!LeOp)
declare M ir!EqOp (displayed as M ir!EqOp)
declare M ir!NeqOp (displayed as M ir!NeqOp)
declare M ir!GeOp (displayed as M ir!GeOp)
declare M ir!GtOp (displayed as M ir!GtOp)

8.2.1 Atoms

Atoms are values: integers, variables, binary operations on atoms, and functions.
AtomFun is a lambda-abstraction, and AtomFunVar is the projection of a function from a recursive

function definition (defined below).

declare M ir!AtomFalse (displayed as false)
declare M ir!AtomTrue (displayed as true)
declare M ir!AtomInt[i:n] (displayed as #i)
declare M ir!AtomBinop{’op; ’a1; ’a2} (displayed as a1 op a2)
declare M ir!AtomRelop{’op; ’a1; ’a2} (displayed as a1 op a2)
declare M ir!AtomFun{x. e[’x]} (displayed as λax . e[x])
declare M ir!AtomVar{’v} (displayed as ↓ v)
declare M ir!AtomFunVar{’R; ’v} (displayed as R.v)

8.2.2 Expressions

There are several simple kinds of expressions.

declare
M ir!LetAtom{’a; v. e[’v]} (displayed as let v = a in e[v])

declare M ir!If{’a; ’e1; ’e2} (displayed as if a then e1 else e2)
declare M ir!ArgNil (displayed as)
declare M ir!ArgCons{’a; ’rest} (displayed as a :: rest)
declare M ir!TailCall{’f; ’args} (displayed as tailcall f args)
declare M ir!Length[i:n] (displayed as i)
declare M ir!AllocTupleNil (displayed as ())
declare M ir!AllocTupleCons{’a; ’rest} (displayed as a :: rest)
declare

M ir!LetTuple{’length; ’tuple; v. e[’v]}
(displayed as let v =[length = length] tuple in e[v])

declare
M ir!LetSubscript{’a1; ’a2; v. e[’v]}
(displayed as let v = a1[a2] in e[v])

declare
M ir!SetSubscript{’a1; ’a2; ’a3; ’e}

25

(displayed as a1[a2] ← a3; e)

Reserve statements are inserted later in each function header.

declare
M ir!Reserve[words:n]{’e}
(displayed as reserve words words in e)

declare
M ir!Reserve[words:n]{’args; ’e}
(displayed as reserve words words args args in e)

declare
M ir!ReserveCons{’a; ’rest}
(displayed as M ir!ReserveCons{a; rest})

declare M ir!ReserveNil (displayed as)

LetApply, Return are eliminated during CPS conversion. LetClosure is like LetApply, but it is a
partial application.

declare
M ir!LetApply{’f; ’a; v. e[’v]}
(displayed as let apply v = f (a) in e[v])

declare
M ir!LetClosure{’a1; ’a2; f. e[’f]}
(displayed as let closure f = a1(a2) in e[f])

declare M ir!Return{’a} (displayed as return(a))

8.2.3 Recursive values

We need some way to represent mutually recursive functions. The normal way to do this is to define a
single recursive function, and use a switch to split the different parts. The method to do this would use
a record. For example, suppose we define two mutually recursive functions f and g:

let r2 = fix{r1. record{
field["f"]{lambda{x. (r1.g)(x)}};
field["g"]{lambda{x. (r1.f)(x)}}}}

in
r2.f(1)

declare
M ir!LetRec{R1. e1[’R1]; R2. e2[’R2]}
(displayed as let rec R1. e1[R1] R2.in e2[R2])

Records have a set of tagged fields. We require that all the fields be functions.
The record construction is recursive. The Label term is used for field tags; the FunDef defines a

new field in the record; and the EndDef term terminates the record fields.

26

declare M ir!Fields{’fields} (displayed as { fields })
declare M ir!Label[tag:t] (displayed as ”tag”)
declare

M ir!FunDef{’label; ’exp; ’rest}
(displayed as fun label = exp rest)

declare M ir!EndDef (displayed as)

To simplify the presentation, we usually project the record fields before each of the field branches so
that we can treat functions as if they were variables.

declare
M ir!LetFun{’R; ’label; f. e[’f]}
(displayed as let fun f = R.label in e[f])

Include a term representing initialization code.

declare M ir!Initialize{’e} (displayed as initialization e end)

8.2.4 Program sequent representation

Programs are represented as sequents: 〈declarations〉 ; 〈definitions〉 ` exp
For now the language is untyped, so each declaration has the form v: exp. A definition is an equality

judgment.

declare M ir!exp (displayed as exp)
declare M ir!def{’v; ’e} (displayed as v = e)
declare M ir!compilable{’e} (displayed as compilable e end)

Some convenient keywords (used in only display forms and do not have a formal meaning).

declare M ir!xlet (displayed as let)
declare M ir!xin (displayed as in)

Sequent tag for the M language.

declare M ir!m (displayed as m)

8.2.5 Subscripting.

Tuples are listed in reverse order.

declare M ir!alloc tuple{’l1; ’l2} (displayed as l1 :: l2)
declare M ir!alloc tuple{’l} (displayed as M ir!alloc tuple{l})

27

9 M cps module

CPS conversion for the M language.

9.1 Parents

extends M ir
extends M util

9.2 Resources

The cps resource
The cps resource provides a generic method for defining CPS transformation. The cpsC conversion

can be used to apply this evaluator.
The implementation of the cps resource and the cpsC conversion rely on tables to store the shape

of redices, together with the conversions for the reduction.

9.2.1 Application

Add an application that we will map through the program. This should be eliminated by the end of
CPS conversion.

• CPSRecordVar[R] represents the application of the record R to the identity function.

• CPSFunVar[f] represents the application of the function f to the identity function.

• CPS[cont; e] is the CPS conversion of expression e with continuation cont . The interpretation is
as the application cont e.

• CPS[cont. fields[cont]] is the CPS conversion of a record body. We think of a record {f1 =
e1; ...; fn = en} as a function from labels to expressions (on label fi, the function returns ei). The
CPS form is λl.λc.CPS[c; fields[l]].

• CPS[a] is the conversion of the atom expression a (which should be the same as a, unless a
includes function variables).

declare M cps!CPSRecordVar{’R} (displayed as CPSRecordVar[R])
declare M cps!CPSFunVar{’f} (displayed as CPSFunVar[f])
declare M cps!CPS{’cont; ’e} (displayed as CPS[cont; e])
declare

M cps!CPS{cont. fields[’cont]}
(displayed as CPS[cont. fields[cont]])

declare M cps!CPS{’a} (displayed as CPS[a])

28

9.2.2 Formalizing CPS conversion

CPS conversion work by transformation of function application. Each rewrite in the transformation
preserves the operational semantics of the program.

For atoms, the transformation is a no-op unless the atom is a function variable. If so, the function
must be partially applied.

![] rewrite cps atom true {| cps |} : CPS[true] ←→ true
![] rewrite cps atom false {| cps |} : CPS[false] ←→ false
![] rewrite cps atom int {| cps |} : CPS[#i] ←→ #i
![] rewrite cps atom var {| cps |} : CPS[↓ v] ←→ ↓ v
![] rewrite cps atom binop {| cps |} :

CPS[(a1 op a2)] ←→ (CPS[a1] op CPS[a2])
![] rewrite cps atom relop {| cps |} :

CPS[(a1 op a2)] ←→ (CPS[a1] op CPS[a2])
![] rewrite cps fun var {| cps |} : CPS[CPSFunVar[f]] ←→ ↓ f
![] rewrite cps alloc tuple nil {| cps |} : CPS[()] ←→ ()
![] rewrite cps alloc tuple cons {| cps |} :

CPS[a :: rest] ←→ CPS[a] :: CPS[rest]
![] rewrite cps arg cons {| cps |} :

CPS[(a :: rest)] ←→ (CPS[a] :: CPS[rest])
![] rewrite cps arg nil {| cps |} : CPS[()] ←→ ()
![] rewrite cps length {| cps |} : CPS[i] ←→ i

CPS transformation for expressions.

![] rewrite cps let atom {| cps |} :
CPS[cont; (let v = a in e[v])] ←→

(let v = CPS[a] in CPS[cont; e[v]])
![] rewrite cps let tuple {| cps |} :

CPS[cont; (let v =[length = length] tuple in e[v])] ←→
(let v =[length = CPS[length]] CPS[tuple] in

CPS[cont; e[v]])
![] rewrite cps let subscript {| cps |} :

CPS[cont; (let v = a1[a2] in e[v])] ←→
(let v = CPS[a1][CPS[a2]] in CPS[cont; e[v]])

![] rewrite cps if {| cps |} :
CPS[cont; (if a then e1 else e2)] ←→

(if CPS[a] then CPS[cont; e1] else CPS[cont; e2])
![] rewrite cps let apply {| cps |} :

CPS[cont; (let apply v = CPSFunVar[f](a2) in e[v])] ←→
(let rec R. fun ”g” = (λav . CPS[cont; e[v]])
R.in
let fun g = R.”g” in tailcall ↓ f (↓ g , CPS[a2]))

Converting functions is the hard part.

![] rewrite cps let rec {| cps |} :

29

CPS[cont; (let rec R1. fields[R1] R2.in e[R2])] ←→
(let rec R1.

CPS[cont. CPS[cont; fields[CPSRecordVar[R1]]]]
R2.in
CPS[cont; e[CPSRecordVar[R2]]])

![] rewrite cps fields {| cps |} :
CPS[cont. CPS[cont; ({ fields[cont] })]] ←→

({ CPS[cont. CPS[cont; fields[cont]]] })
![] rewrite cps fun def {| cps |} :

CPS[cont. CPS[cont; (fun label = (λav . e[v]) rest)]] ←→
(fun label = (λacont . λav . CPS[cont; e[v]])
CPS[cont. CPS[cont; rest]])

![] rewrite cps end def {| cps |} : CPS[cont. CPS[cont;]] ←→
![] rewrite cps initialize {| cps |} :

CPS[cont; (initialization e end)] ←→
(initialization CPS[cont; e] end)

![] rewrite cps let fun {| cps |} :
CPS[cont; (let fun f = CPSRecordVar[R].label in e[f])] ←→

(let fun f = R.label in CPS[cont; e[CPSFunVar[f]]])
![] rewrite cps return {| cps |} :

CPS[cont; return(a)] ←→ (tailcall ↓ cont (CPS[a]))
![] rewrite cps tailcall {| cps |} :

CPS[cont; (tailcall CPSFunVar[f] args)] ←→
(tailcall ↓ f (↓ cont :: CPS[args]))

![] rewrite cps fun var cleanup {| cps |} :
↓ CPSFunVar[f] ←→ CPSFunVar[f]

The program is compilable if the CPS version is compilable.

rule cps prog :
[m]
1. 〈Γ〉
2. cont : exp
`
compilable

let rec R. fun ”.init” = (λacont . CPS[cont; e])
R.in
let fun init = R.”.init” in

initialization tailcall ↓ init (↓ cont) end
end −→
[m] 〈Γ〉 ` compilable e end

10 M closure module

Closure conversion for the M language. The program is closed in four steps.

30

1. In the first step, all LetRec terms are replaced with CloseRec terms, which include an extra frame
parameter. The frame is allocated as a tuple, and and the free variables are projected from the
tuple.

2. In the second step, for each CloseRec that has a free variable, the free variable is added to the
frame, and projected within the record.

3. In the third step, the CloseRec is converted back to a LetRec followed by a tuple allocation.

4. The fourth phase moves code around an generally cleans up.

10.1 Parents

extends M ir

10.2 Resources

The closure resource

10.2.1 Terms

We define several auxiliary terms.
The close v = a in e[v] term is the same as let v = a in e[v]. We use a special term for variables

that are being closed.
The R[frame] term is used to wrap record variables. The term represents the partial application of

the record R to the frame variable.
The close rec R1, frame1. fields[R1; frame1] R2, frame2. tuple of length length body [R2; frame2]

is a recursive record definition. The function defined by the fields[R1; frame1] takes the frame1 as
an extra argument; frame1 represents the environment containing all the functions’ free variables. The
body [R2; frame2] is the rest of the program. The frame2 represents the frame to be used for the functions
in R2. The frame2 is allocated as the tuple, which has “length” fields.

close v = a1[a2] in e[v] is the same as LetSubscript, but we use a special term to guide the
closure conversion process.

λqframe. e[frame] is the term that adds an extra frame argument to each of the functions in the
record.

declare
M closure!CloseVar{v. e[’v]; ’a}
(displayed as close v = a in e[v])

declare M closure!CloseRecVar{’R; ’frame} (displayed as R[frame])
declare

M closure!CloseRec
{R1, frame1. fields[’R1; ’frame1];
R2, frame2. body[’R2; ’frame2];
’length;
’tuple}

(displayed as

31

close rec R1, frame1. fields[R1; frame1]
R2, frame2.
tuple of length length
body [R2; frame2])

declare
M closure!CloseSubscript{’frame; ’index; v. e[’v]}
(displayed as close v = frame[index] in e[v])

declare
M closure!CloseFrame{frame. e[’frame]}
(displayed as λqframe. e[frame])

10.2.2 Phase 1

Convert all LetRec to CloseRec so that each function will have a frame variable for its free variables.

![] rewrite add frame :
(let rec R1. fields[R1]

R2.in
e[R2]) ←→
(close rec R1, frame. fields[R1[frame]]
R2, frame.
() of length 0
e[R2[frame]])

10.2.3 Phase 2

In the first phase, we abstract free variables using inverse beta-reduction. That is, suppose we have a
recursive definition:

close rec R, frame.
fun f_1 = e_1
...
fun f_n = e_n

in ...

and suppose that one of the function bodies ei has a free variable v. Then we first abstract the
variable:

CloseVar{v. close rec ...; v}

Next, we apply the close frame rewrite, which takes the free variable, adds it to the frame, and
projects it in the record.

close var v = a in
close rec R, frame.

32

fun f_1 = e_1
...
fun f_n = e_n

R, frame (length = i)(args) in
...

close rec R, frame.
let v = frame[i] in
fun f_1 = e_1
...
fun f_n = e_n

R, frame (length = i + 1)(v :: args) in
...

Variable closure is a beta-rewrite.

![] rewrite reduce beta : (close v = a in e[v]) ←→ e[a]

This is the main function to lift out free variables.

declare M closure!Length{’length} (displayed as Length(length))
![] rewrite wrap length : Length(im) ←→ i
![] rewrite close frame :

(close v = a in
close rec R1, frame1. fields[v ; R1; frame1]
R2, frame2.
tuple of length i
body [v ; R2; frame2]) ←→
(close rec R1, frame1.

close v = ↓ frame1[#i] in fields[v ; R1; frame1]
R2, frame2.
↓ a :: tuple of length Length(i +m

1)
let v = ↓ a in body [v ; R2; frame2])

Now, a conversional to apply the inverse-beta reduction. The vars parameter is the set of function
variables. Function variables are not treated as free; we don’t need closure conversion for them.

10.2.4 Phase 3

Convert the CloseRec term to a LetRec plus a frame allocation.

![] rewrite close close rec :
(close rec R1, frame1. fields[R1; frame1]

R2, frame2.

33

tuple of length length
body [R2; frame2]) ←→
(let rec R1. (λqframe1. fields[R1; frame1])
R2.in
let frame2 =[length = length] tuple in body [R2; frame2])

10.2.5 Phase 4

Generally clean up and move code around.

![] rewrite close fields :
(close v = a1[a2] in { fields[v] }) ←→

({ close v = a1[a2] in fields[v] })
![] rewrite close fundef :

(close v1 = a1[a2] in fun label = (λav2. e[v1; v2]) rest [v1]) ←→
(fun label = (λav2. let v1 = a1[a2] in e[v1; v2])
close v1 = a1[a2] in rest [v1])

![] rewrite close enddef : (close v = a1[a2] in) ←→
![] rewrite close frame fields :

(λqframe. { fields[frame] }) ←→ ({ (λqframe. fields[frame]) })
![] rewrite close frame fundef :

(λqframe. fun label = (λav . e[frame; v]) rest [frame]) ←→
(fun label = (λaframe. λav . e[frame; v])
(λqframe. rest [frame]))

![] rewrite close frame enddef : (λqframe.) ←→
![] rewrite close let subscript :

(let v1 = a1[a2] in (λav2. e[v1; v2])) ←→
(λav2. let v1 = a1[a2] in e[v1; v2])

![] rewrite close initialize 1 :
(let closure v = a1(a2) in initialization e[v] end) ←→

(initialization let closure v = a1(a2) in e[v] end)
![] rewrite close initialize 2 :

(let v =[length = length] tuple in initialization e[v] end) ←→
(initialization

let v =[length = length] tuple in e[v]
end)

![] rewrite close let fun :
(let fun v = R[frame].label in e[v]) ←→

(let closure v = R.label(↓ frame) in e[v])
![] rewrite close tailcall :

(let closure g = f (frame) in tailcall ↓ g args) ←→
(tailcall f (frame :: args))

34

11 M prog module

This module defines rewrites to lift closed function definitions to the top level of the program. Ideally,
these transformations would be applied after closure conversion.

11.1 Parents

extends M ir

11.2 Resources

The prog resource provides a generic method for defining a method of lifting closed function definitions
to the top level of a program. The progC conversion can be used to apply this evaluator.

The implementation of the prog resource and the progC conversion rely on tables to store the
shape of redices, together with the conversions for the reduction.

11.3 Rewrites

The rewrites for this transformation are straightforward. They swap a closed function definition with
any expression that comes before it.

![] rewrite letrec atom fun :
(λax . let rec R1. fields[R1] R2.in e[R2; x]) ←→

(let rec R1. fields[R1]
R2.in
(λax . e[R2; x]))

![] rewrite letrec let atom :
(let v = a in let rec R1. fields[R1] R2.in e[R2; v]) ←→

(let rec R1. fields[R1]
R2.in
let v = a in e[R2; v])

![] rewrite letrec let tuple :
(let v =[length = length] tuple in

let rec R1. fields[R1]
R2.in
e[R2; v]) ←→
(let rec R1. fields[R1]
R2.in
let v =[length = length] tuple in e[R2; v])

![] rewrite letrec let subscript :
(let v = a1[a2] in let rec R1. fields[R1] R2.in e[R2; v]) ←→

(let rec R1. fields[R1]
R2.in
let v = a1[a2] in e[R2; v])

![] rewrite letrec let closure :

35

(let closure v = f (a) in
let rec R1. fields[R1]
R2.in
e[R2; v]) ←→
(let rec R1. fields[R1]
R2.in
let closure v = f (a) in e[R2; v])

![] rewrite letrec if true :
(if a then let rec R1. fields[R1]

R2.in
e1[R2] else e2) ←→
(let rec R1. fields[R1]
R2.in
(if a then e1[R2] else e2))

![] rewrite letrec if false :
(if a then e1 else let rec R1. fields[R1]

R2.in
e2[R2]) ←→
(let rec R1. fields[R1]
R2.in
(if a then e1 else e2[R2]))

![] rewrite letrec fun def :
(fun label = let rec R1. fields[R1] R2.in e[R2]

rest) ←→
(let rec R1. fields[R1]
R2.in
fun label = e[R2]
rest)

![] rewrite letrec fields def :
({ let rec R1. fields[R1] R2.in e[R2] }) ←→

(let rec R1. fields[R1]
R2.in
{ e[R2] })

![] rewrite letrec letrec :
(let rec R1. let rec R2. fields[R2] R3.in e1[R1; R3]

R4.in
e2[R4]) ←→
(let rec R2. fields[R2]
R3.in
let rec R1. e1[R1; R3]
R4.in
e2[R4])

36

12 M dead module

This module implements an aggressive form of dead-code elimination. A let-definition is considered
dead if the variable it defines is not used. If the defining value would normally raise an exception (e.g.,
division by zero), the semantics of the program could change.

12.1 Parents

extends M ir

12.2 Resources

The dead resource provides a generic method for defining dead code elimination. The deadC conversion
can be used to apply this evaluator.

The implementation of the dead resource and the deadC conversion rely on tables to store the
shape of redices, together with the conversions for the reduction.

12.3 Rewrites

The rewrites are straightforward. Note that in the redeces below, v is not allowed to be free in e. Each
of these rewrites is added to the dead resource.

![] rewrite dead let atom : (let v = a in e) ←→ e
![] rewrite dead let tuple :

(let v =[length = length] tuple in e) ←→ e
![] rewrite dead let subscript : (let v = a1[a2] in e) ←→ e
![] rewrite dead let closure : (let closure v = a1(a2) in e) ←→ e

13 M inline module

This module implements a simple form of constant folding and constant inlining. We do not inline
functions due to our somewhat cumbersome choice of representation for function definitions.

13.1 Parents

extends M ir

37

13.2 Meta-arithmetic

We use the MetaPRL built-in meta-arithmetic to fold constants. Arithmetic is performed using meta-
terms, so we need a way to convert back to a number (i.e., atom).

declare M inline!MetaInt{’e} (displayed as Meta[e])
![] rewrite meta int elim {| reduce |} : Meta[im] ←→ #i

13.3 Rewrites

Each of the rewrites below is added to the reduce resource. We group them into ones to perform
constant folding and ones to inline constants.

13.3.1 Constant folding

Constant folding is straightforward given the meta-arithmetic provided by MetaPRL.

![] rewrite reduce add : (#i + #j) ←→ Meta[i +m j]
![] rewrite reduce sub : (#i − #j) ←→ Meta[i −m j]
![] rewrite reduce mul : (#i ∗ #j) ←→ Meta[i ∗m j]
![] rewrite reduce div : (#i / #j) ←→ Meta[i ÷m j]

13.3.2 Constant inlining

Constant inlining is also straightforward. We can inline the branches of conditional expressions if we
know the guards at compile time.

![] rewrite reduce let atom true {| reduce |} :
(let v = true in e[v]) ←→ e[true]

![] rewrite reduce let atom false {| reduce |} :
(let v = false in e[v]) ←→ e[false]

![] rewrite reduce let atom int {| reduce |} :
(let v = #i in e[v]) ←→ e[#i]

![] rewrite reduce let atom var {| reduce |} :
(let v2 = ↓ v1 in e[v2]) ←→ e[v1]

![] rewrite reduce if true {| reduce |} :
(if true then e1 else e2) ←→ e1

![] rewrite reduce if false {| reduce |} :
(if false then e1 else e2) ←→ e2

We need these last three rewrites to ensure that the final program produced is well-formed. Variables
whose values have been inlined are rewritten to their value.

![] rewrite unfold atom var true {| reduce |} : ↓ true ←→ true
![] rewrite unfold atom var false {| reduce |} : ↓ false ←→ false
![] rewrite unfold atom var int {| reduce |} : ↓ #i ←→ #i

38

14 M x86 asm module

This module defines our representation of x86 assembly code. The one difference here, compared to
traditional approaches, is that we continue to use variable scoping.

14.1 Parents

extends Base theory

14.2 x86 operands

declare M x86 asm!ImmediateNumber[i:n] (displayed as $i)
declare

M x86 asm!ImmediateLabel[label:t]{’R} (displayed as R.label)
declare

M x86 asm!ImmediateCLabel[label:t]{’R}
(displayed as $R.label)

declare M x86 asm!Register{’v} (displayed as %v)
declare M x86 asm!SpillMemory{’label} (displayed as spill[label])
declare

M x86 asm!SpillRegister{’v; ’label}
(displayed as spill[v , label])

declare
M x86 asm!ContextRegister[label:t]
(displayed as context[label])

declare M x86 asm!MemReg{’r} (displayed as (%r))
declare M x86 asm!MemRegOff[i:n]{’r} (displayed as i(%r))
declare

M x86 asm!MemRegRegOffMul[off:n, mul:n]{’r1; ’r2}
(displayed as (%r1,%r2, off,mul))

14.3 Condition codes

These condition codes are used in the Jcc (conditional jump) instruction below.

declare M x86 asm!CC["lt":s] (displayed as lt)
declare M x86 asm!CC["le":s] (displayed as le)
declare M x86 asm!CC["z":s] (displayed as z)
declare M x86 asm!CC["nz":s] (displayed as nz)
declare M x86 asm!CC["gt":s] (displayed as gt)
declare M x86 asm!CC["ge":s] (displayed as ge)
declare M x86 asm!CC["b":s] (displayed as b)
declare M x86 asm!CC["be":s] (displayed as be)
declare M x86 asm!CC["a":s] (displayed as a)
declare M x86 asm!CC["ae":s] (displayed as ae)

39

14.4 Instructions

We want the assembly to have “semi-functional” property, meaning that registers are immutable. The
register allocator will coalesce registers, creating implicit assignments in the process.

This presents an interesting problem for the x86, since it uses the two-operand instruction form. To
get around this, we define a normal two-operand instruction set for memory operands. Then we define
a three-operand set for register destination operands. Again, the allocator is responsible for making
sure the dst and the first src register are the same.

Further, for simplicity, we categorize instructions into several kinds:

• Mov defines a new register from an arbitrary operand

• Inst1[opname]: a normal one-operand instruction

• Inst2[opname]: this is a normal two-operand instruction

• Inst3[opname]: a MUL/DIV instruction

• Shift[opname]: a shift instruction

• Cmp[opname]: a comparison; both operands are sources

• Set[opname]: the set/cc instruction

declare
M x86 asm!Mov{’src; dst. rest[’dst]}
(displayed as mov src, %dst /* LET */ rest [dst])

declare
M x86 asm!Spill[opcode:s]{’src; dst. rest[’dst]}
(displayed as M x86 asm!Spill[opcode : s]{src; dst. rest [dst]})

declare
M x86 asm!Inst1[opcode:s]{’dst; ’rest}
(displayed as opcode dst /* Memory operand */ rest)

declare
M x86 asm!Inst1[opcode:s]{’src; dst. rest[’dst]}
(displayed as opcode src, %dst rest [dst])

declare
M x86 asm!Inst2[opcode:s]{’src; ’dst; ’rest}
(displayed as opcode src, dst /* Memory operand */ rest)

declare
M x86 asm!Inst2[opcode:s]{’src1; ’src2; dst. rest[’dst]}
(displayed as opcode src1, src2, dst rest [dst])

declare
M x86 asm!Inst3

[opcode:s]
{’src1;
’src2;
’src3;
dst2, dst3. rest[’dst2; ’dst3]}

(displayed as
opcode src1, src2, %dst2, %dst3

40

rest [dst2; dst3])
declare

M x86 asm!Shift[opcode:s]{’src; ’dst; ’rest}
(displayed as opcode src, dst /* Memory operand */ rest)

declare
M x86 asm!Shift[opcode:s]{’src1; ’src2; dst. rest[’dst]}
(displayed as opcode src1, src2, %dst rest [dst])

declare
M x86 asm!Cmp[opcode:s]{’src1; ’src2; ’rest}
(displayed as opcode src1, src2 rest)

declare
M x86 asm!Set[opcode:s]{’cc; ’dst; rest[’dst]}
(displayed as M x86 asm!Set[opcode : s]{cc; dst ; rest [dst]})

declare
M x86 asm!Set[opcode:s]{’cc; ’src; dst. rest[’dst]}
(displayed as opcode[cc] src, %dst rest [dst])

declare M x86 asm!AsmArgNil (displayed as ())
declare M x86 asm!AsmArgCons{’a; ’rest} (displayed as a :: rest)
declare

M x86 asm!Jmp[opcode:s]{’label; ’args}
(displayed as opcode label(args))

declare
M x86 asm!Jcc[opcode:s]{’cc; ’rest1; ’rest2}
(displayed as opcode[cc] begin rest1 end rest2)

This is a pseudo-instruction that calls the garbage collector to ensure that the specified number of words
is available. The parameters are the live registers (normally the parameters to the current function).

declare
M x86 asm!AsmReserve[words:n]{’params}
(displayed as reserve words words args(params) in)

The Comment instruction is not a real instruction. It is used to include a comment in the program
output; the text is given in the string parameter.

declare
M x86 asm!Comment[comment:s]{’rest}
(displayed as / ∗ Comment : comment ∗ / rest)

The program initialization is wrapped in the Init term; we don’t include the initialization code in the
program output.

declare M x86 asm!Init{’rest} (displayed as initialize rest end)

41

14.5 Programs

A program is a set of recursive definitions, just like it is in the IR. The labels in the assembly correspond
to functions, and the register allocator is responsible for ensuring that the calling convention is respected.

declare M x86 asm!LabelAsm[label:t]{’R} (displayed as R.label :)
declare

M x86 asm!LabelRec{R1. fields[’R1]; R2. rest[’R2]}
(displayed as
/ ∗ LabelRecF ields[R1] begins here ∗ /
fields[R1]/ ∗ LabelRecF ields[R1] ends here ∗ /
/ ∗ LabelRecBody[R2] begins here ∗ /
rest [R2])

declare
M x86 asm!LabelDef{’label; ’code; ’rest}
(displayed as label code rest)

declare M x86 asm!LabelEnd (displayed as)
declare

M x86 asm!LabelFun{v. insts[’v]}
(displayed as / ∗ param v ∗ / insts[v])

15 M x86 codegen module

This module implements the translation of IR terms to x86 assembly.

15.1 Parents

extends M ir
extends M x86 frame

15.2 Terms

We define several terms to represent the assembly translation. All these terms are eliminated by the
end of the translation process.

• assemble e end represents the translation of IR expressions into sequences of assembly instruc-
tions.

• let v = assemble(a) in e[v] represents the translation of an IR atom into an assembly operand,
which in turn is substituted for variable v in e[v].

• assemble args[src = args1 dst = args2 as v] in e[v] represents the translation of IR function
arguments into assembly operands

• assemble [R] e end represents the translation of the mutually recursive IR functions in record
R and the rest of the program.

42

declare M x86 codegen!ASM{’e} (displayed as assemble e end)
declare

M x86 codegen!ASM{’a; v. e[’v]}
(displayed as let v = assemble(a) in e[v])

declare
M x86 codegen!ASM{’args1; ’args2; v. e[’v]}
(displayed as
assemble args[src = args1 dst = args2 as v] in
e[v])

declare
M x86 codegen!ASM{’R; ’e} (displayed as assemble [R] e end)

Helper terms to store fields into a tuple.

declare
M x86 codegen!store tuple{’v; ’tuple; ’rest}
(displayed as store tuple[v , tuple] rest)

declare
M x86 codegen!store tuple{’v; ’off; ’tuple; ’rest}
(displayed as store tuple[v , off , tuple] rest)

![] rewrite unfold store tuple {| reduce |} :
store tuple[v , tuple]

rest ←→
/ ∗ Comment : unfold store tuple ∗ /
mov %v , %p /* LET */
store tuple[p, 0, tuple]
rest

![] rewrite unfold store tuple cons {| reduce |} :
store tuple[v , off , a :: tl]

rest ←→
/ ∗ Comment : unfold store tuple cons ∗ /
let v1 = assemble(a) in
mov v1, off < v > /* Memory operand */
store tuple[v , (off + $word size), tl]
rest

![] rewrite unfold store tuple nil {| reduce |} :
store tuple[v , off , ()] rest ←→ rest

Terms used to reverse the order of the atoms in tuples.

declare
M x86 codegen!reverse tuple{’tuple}
(displayed as reverse tuple[tuple])

declare
M x86 codegen!reverse tuple{’dst; ’src}
(displayed as reverse tuple[src = src dst = dst])

![] rewrite unfold reverse tuple {| reduce |} :

43

reverse tuple[tuple] ←→ reverse tuple[src = tuple dst = ()]
![] rewrite reduce reverse tuple cons {| reduce |} :

reverse tuple[src = a :: rest dst = dst] ←→
reverse tuple[src = rest dst = a :: dst]

![] rewrite reduce reverse tuple nil {| reduce |} :
reverse tuple[src = () dst = dst] ←→ dst

Reverse the order of arguments.

declare
M x86 codegen!reverse args{’args}
(displayed as reverse args[args])

declare
M x86 codegen!reverse args{’args1; ’args2}
(displayed as reverse args[src = args2 dst = args1])

![] rewrite unfold reverse args {| reduce |} :
reverse args[args] ←→ reverse args[src = args dst = ()]

![] rewrite reduce reverse args cons {| reduce |} :
reverse args[src = a :: rest dst = args] ←→

reverse args[src = rest dst = a :: args]
![] rewrite reduce reverse args nil {| reduce |} :

reverse args[src = () dst = args] ←→ args

Copy the arguments into registers.

declare
M x86 codegen!copy args{’args; v. e[’v]}
(displayed as let v = copy args[args] in e[v])

declare
M x86 codegen!copy args{’args1; ’args2; v. e[’v]}
(displayed as
let v = copy args[src = args2 dst = args1] in
e[v])

![] rewrite unfold copy args {| reduce |} :
let v = copy args[args] in

e[v] ←→
let v = copy args[src = args dst = ()] in
e[v]

![] rewrite reduce copy args cons {| reduce |} :
let v = copy args[src = a :: rest dst = dst] in

e[v] ←→
mov a, %arg /* LET */
let v = copy args[src = rest dst = %arg :: dst] in
e[v]

![] rewrite reduce copy args nil {| reduce |} :
let v = copy args[src = () dst = dst] in

e[v] ←→

44

e[reverse args[dst]]

Assemble function arguments.

![] rewrite asm arg cons {| reduce |} :
assemble args[src = (a :: rest) dst = args as v] in

e[v] ←→
let arg = assemble(a) in
assemble args[src = rest dst = arg :: args as v] in
e[v]

![] rewrite asm arg nil {| reduce |} :
assemble args[src = () dst = args as v] in

e[v] ←→
e[reverse args[args]]

15.3 Code generation

In our runtime, integers are shifted to the left and use the upper 31 bits only. The least significant bit
is set to 1, so that we can distinguish between integers and pointers.

15.3.1 Atoms

Booleans are translated to integers. We use the standard encodings, 0 for false and 1 for true, which in
our integer representation translate to 1 and 3, respectively.

![] rewrite asm atom false {| reduce |} :
let v = assemble(false) in e[v] ←→ e[$1]

![] rewrite asm atom true {| reduce |} :
let v = assemble(true) in e[v] ←→ e[$3]

Integers are adjusted for our runtime representation.

![] rewrite asm atom int {| reduce |} :
let v = assemble(#i) in e[v] ←→ e[$((i ∗ 2 + 1))]

Variables are translated to registers.

![] rewrite asm atom var {| reduce |} :
let v2 = assemble(↓ v1) in e[v2] ←→ e[%v1]

Function labels become labels.

![] rewrite asm atom fun var {| reduce |} :
let v2 = assemble((R.”label”)) in e[v2] ←→ e[$R.label]

Functions are assembled.

45

![] rewrite asm atom fun {| reduce |} :
assemble (λav . e[v]) end ←→ / ∗ param v ∗ / assemble e[v] end

Binary operators are translated to a sequence of assembly instructions that implement that operation.
Note that each operation is followed by adjusting the result so that it conforms with our 31-bit integer
representation.

![] rewrite asm atom binop add {| reduce |} :
let v = assemble((a1 + a2)) in

e[v] ←→
/ ∗ Comment : asm atom binop add ∗ /
let v1 = assemble(a1) in
let v2 = assemble(a2) in
add v2, v1, sumtmp

dec %sumtmp, %sum
e[%sum]

![] rewrite asm atom binop sub {| reduce |} :
let v = assemble((a1 − a2)) in

e[v] ←→
/ ∗ Comment : asm atom binop sub ∗ /
let v1 = assemble(a1) in
let v2 = assemble(a2) in
sub v2, v1, diff tmp

inc %diff tmp, %diff
e[%diff]

In multiplication and division we first obtain the standard integer representation, perform the appro-
priate operation, and adjust the result.

![] rewrite asm atom binop mul {| reduce |} :
let v = assemble((a1 ∗ a2)) in

e[v] ←→
/ ∗ Comment : asm atom binop mul ∗ /
let v1 = assemble(a1) in
let v2 = assemble(a2) in
sar $1, v1, %v1 int

sar $1, v2, %v2 int

imul %v1 int, %v2 int, prod tmp1

shl $1, %prod tmp1, %prod tmp2

or $1, %prod tmp2, prod
e[%prod]

![] rewrite asm atom binop div {| reduce |} :
let v = assemble((a1 / a2)) in

e[v] ←→
/ ∗ Comment : asm atom binop div ∗ /
let v1 = assemble(a1) in
let v2 = assemble(a2) in

46

sar $1, v1, %v1 tmp

sar $1, v2, %v2 tmp

mov $0, %v3 tmp /* LET */
div %v2 tmp, %v1 tmp, %quot tmp1, %remtmp

shl $1, %quot tmp1, %quot tmp2

or $1, %quot tmp2, quot1

e[%quot1]

Assembling IR relational operators is a mapping to the appropriate condition codes. The operations
themselves become assembly comparisons.

![] rewrite asm eq {| reduce |} : assemble M ir!EqOp end ←→ z
![] rewrite asm neq {| reduce |} : assemble M ir!NeqOp end ←→ nz
![] rewrite asm lt {| reduce |} : assemble M ir!LtOp end ←→ l
![] rewrite asm le {| reduce |} : assemble M ir!LeOp end ←→ le
![] rewrite asm gt {| reduce |} : assemble M ir!GtOp end ←→ g
![] rewrite asm ge {| reduce |} : assemble M ir!GeOp end ←→ ge
![] rewrite asm atom relop {| reduce |} :

let v = assemble((a1 op a2)) in
e[v] ←→
/ ∗ Comment : asm atom relop ∗ /
let v1 = assemble(a1) in
let v2 = assemble(a2) in
cmp v1, v2

mov $0, %eqsrc /* LET */
set[assemble op end] %eqsrc, %eqdst
e[%eqdst]

Reserve memory.

![] rewrite asm reserve 1 {| reduce |} :
assemble (reserve reswords words args params in e) end ←→

mov context[limit], %limit /* LET */
sub context[next], %limit, bytes
cmp $((reswords ∗ $word size)), %bytes
j[b] begin

assemble args[src = params dst = () as v] in
reserve reswords words args(v) in

end
assemble e end

![] rewrite asm reserve 2 {| reduce |} :
assemble (reserve words words in e) end ←→ assemble e end

The translation of LetAtom is straightforward: we first translate the atom a into an operand v1, which
is then moved into v .

![] rewrite asm let atom {| reduce |} :

47

assemble (let v = a in e[v]) end ←→
/ ∗ Comment : asm let atom ∗ /
let v1 = assemble(a) in
mov v1, %v /* LET */
assemble e[v] end

Conditionals are translated into a comparison followed by a conditional branch.

![] rewrite asm if 1 {| reduce |} :
assemble (if a then e1 else e2) end ←→

/ ∗ Comment : asm if 1 ∗ /
let test = assemble(a) in
cmp $0, test
j[z] begin assemble e2 end end
assemble e1 end

If the condition is a relational operation, we carry over the relational operator to the conditional jump.

![] rewrite asm if 2 {| reduce |} :
assemble (if a1 op a2 then e1 else e2) end ←→

/ ∗ Comment : asm if 2 ∗ /
let v1 = assemble(a1) in
let v2 = assemble(a2) in
cmp v2, v1

j[assemble op end] begin assemble e1 end end
assemble e2 end

Reading from the memory involves assembling the pointer to the appropriate block and the index within
that block. We then fetch the value from the specified memory location and move it into v .

![] rewrite asm let subscript 1 {| reduce |} :
assemble (let v = a1[a2] in e[v]) end ←→

/ ∗ Comment : asm let subscript ∗ /
let v1 = assemble(a1) in
let v2 = assemble(a2) in
mov v1, %tuple /* LET */
mov v2, %index tmp /* LET */
sar $1, %index tmp, %index
mov < v1, index , 0, $word size > , %v /* LET */
assemble e[v] end

![] rewrite asm let subscript 2 {| reduce |} :
assemble (let v = a1[#i] in e[v]) end ←→

/ ∗ Comment : asm let subscript ∗ /
let v1 = assemble(a1) in
mov v1, %tuple /* LET */
mov (i ∗ $word size) < tuple > , %v /* LET */
assemble e[v] end

48

Changing a memory location involves assembling the block pointer and the index within the block. The
value to be written is assembled and moved into the specified memory location.

![] rewrite asm set subscript 1 {| reduce |} :
assemble (a1[a2] ← a3; e) end ←→

/ ∗ Comment : asm set subscript ∗ /
let v1 = assemble(a1) in
let v2 = assemble(a2) in
mov v1, %tuple /* LET */
mov v2, %index tmp /* LET */
sar $1, %index tmp, %index
let v3 = assemble(a3) in
mov v3, < v1, index , 0, $word size > /* Memory operand */
assemble e end

![] rewrite asm set subscript 2 {| reduce |} :
assemble (a1[#i] ← a3; e) end ←→

/ ∗ Comment : asm set subscript ∗ /
let v1 = assemble(a1) in
mov v1, %tuple /* LET */
let v3 = assemble(a3) in
mov v3, (i ∗ $word size) < v1 > /* Memory operand */
assemble e end

Allocating a tuple involves obtaining a block from the store by advancing the next pointer by the size
of the tuple (plus its header), creating the header for the new block, and storing the tuple elements in
that block.

![] rewrite asm alloc tuple {| reduce |} :
assemble (let v =[length = i] tuple in e[v]) end ←→

/ ∗ Comment : asm alloc tuple ∗ /
mov context[next], %v /* LET */
add $(((i + 1) ∗ $word size)), context[next] /* Memory operand */
mov header[i], (%v) /* Memory operand */
add $($word size), %v , p
store tuple[p, reverse tuple[tuple]]
assemble e[p] end

Allocating a closure is similar to 2-tuple allocation.

![] rewrite asm let closure {| reduce |} :
assemble (let closure v = a1(a2) in e[v]) end ←→

/ ∗ Comment : asm let closure ∗ /
mov context[next], %v /* LET */
add $((3 ∗ $word size)), context[next] /* Memory operand */
mov header[2], (%v) /* Memory operand */
let v1 = assemble(a1) in
let v2 = assemble(a2) in
mov v1, $word size < v > /* Memory operand */

49

mov v2, (2 ∗ $word size) < v > /* Memory operand */
add $($word size), %v , p
assemble e[p] end

Assembling tail-calls to IR functions involve assembling the function arguments and jumping to the
appropriate function label.

![] rewrite asm tailcall direct {| reduce |} :
assemble (tailcall R.”label” args) end ←→

/ ∗ Comment : asm tailcall direct ∗ /
assemble args[src = args dst = () as args1] in
let args2 = copy args[args1] in
jmp R.label(args2)

![] rewrite asm tailcall indirect {| reduce |} :
assemble (tailcall a args) end ←→

/ ∗ Comment : asm tailcall ∗ /
let closuretmp = assemble(a) in
assemble args[src = args dst = () as args1] in
mov closuretmp, %closure /* LET */
mov 4(%closure), %env /* LET */
let args2 = copy args[args1] in
jmp (%closure)(%env :: args2)

An IR program is a set of recursive functions. These are assembled and identified by function labels.

![] rewrite asm letrec {| reduce |} :
assemble (let rec R1. fields[R1] R2.in e[R2]) end ←→

/ ∗ Comment : asm letrec ∗ /
/ ∗ LabelRecF ields[R1] begins here ∗ /
assemble [R1] fields[R1] end/ ∗ LabelRecF ields[R1] ends here ∗ /
/ ∗ LabelRecBody[R2] begins here ∗ /
assemble e[R2] end

![] rewrite asm fields {| reduce |} :
assemble [R] ({ fields }) end ←→ assemble [R] fields end

![] rewrite asm fun def {| reduce |} :
assemble [R] (fun ”label” = e rest) end ←→

R.label : assemble e end
assemble [R] rest end

![] rewrite asm end def {| reduce |} : assemble [R] end ←→
![] rewrite asm initialize {| reduce |} :

assemble (initialization e end) end ←→
initialize assemble e end end

The program is compilable if the assembly is compilable.

rule codegen prog :
[m] 〈Γ〉 ` compilable assemble e end end −→

50

[m] 〈Γ〉 ` compilable e end

16 M x86 opt module

This module implements some easy assembly optimizations, including dead instruction elimination and
removal of null reserves.

16.1 Parents

extends M x86 asm
extends M util

16.2 Resources

The before ra resource provides a generic method for defining rewrites that may be applied before
register allocation. The before raC conversion can be used to apply this evaluator.

The implementation of the before ra resource and the before raC conversion rely on tables to
store the shape of redices, together with the conversions for the reduction.

The after ra resource and corresponding conversion after raC are similar.

16.3 Rewrites

16.3.1 Dead instruction elimination

Dead instructions, i.e. those instructions that define a variable that is not used in the rest of the
program, may be eliminated. The rewrites below are aggressive; the program’s semantics could change
if an instruction that can raise an exception is eliminated. These rewrites are added to the before ra
resource, although they may be applied after register allocation as well.

![] rewrite dead mov : mov src, %dst /* LET */ e ←→ e
![] rewrite dead inst1 : opcode src, %dst e ←→ e
![] rewrite dead inst2 : opcode src1, src2, dst e ←→ e
![] rewrite dead inst3 : opcode src1, src2, %dst2, %dst3 e ←→ e
![] rewrite dead shift : opcode src1, src2, %dst e ←→ e
![] rewrite dead set : opcode[cc] src, %dst e ←→ e

16.3.2 Null reserve elimination

Null reserves may be eliminated from the program. The rewrite below is added to the after ra resource
since it is valid only after register allocation.

![] rewrite delete null reserve :
cmp a1, a2

opcode[cc] begin reserve 0 words args(params) in end
rest ←→

51

rest

References

[1] A. W. Appel. Compiling with Continuations. Cambridge University Press, 1992.

[2] Gregory J. Chaitin, Marc A. Auslander, Ashok K. Chandra, John Cocke, Martin E. Hopkins, and
Peter W. Markstein. Register allocation via coloring. Computer Languages, 6(1):47–57, January
1981.

[3] Adam Granicz and Jason Hickey. Phobos: A front-end approach to extensible compilers. In 36th

Hawaii International Conference on System Sciences. IEEE, 2002.

[4] Jason Hickey, Aleksey Nogin, Robert L. Constable, Brian E. Aydemir, Eli Barzilay, Yegor
Bryukhov, Richard Eaton, Adam Granicz, Alexei Kopylov, Christoph Kreitz, Vladimir N. Krupski,
Lori Lorigo, Stephan Schmitt, Carl Witty, and Xin Yu. MetaPRL — a modular logical environment.
Submitted to the TPHOLs 2003 Conference, 2003.

[5] Jason Hickey, Justin D. Smith, Brian Aydemir, Nathaniel Gray, Adam Granicz, and Cristian
Tapus. Process migration and transactions using a novel intermediate language. Technical Report
caltechCSTR:2002.007, California Institute of Technology, Computer Science, August 2002.

[6] Jason J. Hickey. The MetaPRL Logical Programming Environment. PhD thesis, Cornell University,
Ithaca, NY, January 2001.

[7] Jason J. Hickey et al. Mojave research project home page. http://mojave.caltech.edu/.

[8] Jason J. Hickey, Aleksey Nogin, Alexei Kopylov, et al. MetaPRL home page. http://metaprl.org/.

[9] Steven C. Johnson. Yacc — yet another compiler compiler. Computer Science Technical Report 32,
AT&T Bell Laboratories, July 1975.

[10] Chuck C. Liang. Compiler construction in higher order logic programming. In Practical Aspects of
Declarative Languages, volume 2257 of Lecture Notes in Computer Science, pages 47–63, 2002.

[11] M. G. J. van den Brand, J. Heering, P. Klint, and P. A. Olivier. Compiling Rewrite Systems: The
ASF+SDF Compiler. ACM Transactions on Programming Languages and Systems, 24:334–368,
2002.

[12] J. Gregory Morrisett, David Walker, Karl Crary, and Neal Glew. From system F to typed assembly
language. Principles of Programming Languages, 1998.

[13] G. C. Necula and P. Lee. The design and implementation of a certifying compiler. In Proceedings
of the 1998 ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), pages 333–344, 1998.

[14] George C. Necula. Translation validation for an optimizing compiler. ACM SIGPLAN Notices,
35(5):83–94, 2000.

52

http://mojave.caltech.edu/
http://metaprl.org/

[15] Aleksey Nogin and Jason Hickey. Sequent schema for derived rules. In Victor A. Carreño, Cézar A.
Muñoz, and Sophiène Tahar, editors, Proceedings of the 15th International Conference on Theo-
rem Proving in Higher Order Logics (TPHOLs 2002), volume 2410 of Lecture Notes in Computer
Science, pages 281–297. Springer-Verlag, 2002.

[16] Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In Proceedings of the ACM
SIGPLAN ’88 Conference on Programming Language Design and Implementation (PLDI), volume
23(7) of SIGPLAN Notices, pages 199–208, Atlanta, Georgia, June 1988. ACM Press.

[17] Andrew M. Pitts and Murdoch Gabbay. A metalanguage for programming with bound names mod-
ulo renaming. In R. Backhouse and J. N. Oliveira, editors, Mathematics of Program Construction,
volume 1837 of Lecture Notes in Computer Science, pages 230–255. Springer-Verlag, Heidelberg,
2000.

[18] D. Tarditi. Design and implementation of code optimizations for a type-directed compiler for Stan-
dard ML. PhD thesis, Carnegie Mellon University, Pittsburgh, PA, USA, 1997.

[19] Jeffrey D. Ullman. Elements of ML Programming. Prentice Hall, 1998.

[20] Pierre Weis and Xavier Leroy. Le langage Caml. Dunod, Paris, 2nd edition, 1999. In French.

53

